Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(12): 2436-2447, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009640

RESUMEN

The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with ß-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Antibacterianos/farmacología , Oxacilina/farmacología , Biopelículas , Péptidos/farmacología , Hormonas Estimuladoras de los Melanocitos
2.
ACS Infect Dis ; 8(12): 2480-2493, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36440863

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA), a biofilm-forming recalcitrant pathogen with a multidrug-resistant profile, poses a pandemic threat to human health and is the leading cause of severe infections in both healthcare and community settings. In this study, toward designing novel α-MSH-based peptides with enhanced activity and stability against MRSA, particularly its stationary phase and biofilm, we explored a design approach to augment the hydrophobicity of an 8-mer C-terminal α-MSH(6-13)-based peptide Ana-5 through the incorporation of a bulky unnatural amino acid. The designed Ana-peptides overcame the limitation of diminished activity in biological media and exhibited enhanced antistaphylococcal activity and cell selectivity. With membrane rupture as the primary mode of action, the peptides exhibited inhibitory potential against S. aureus biofilms. Importantly, the peptides did not exhibit any adverse effects in the in vivo toxicity studies and were also able to significantly alleviate bacterial infection in a systemic infection mice model study. Additionally, the peptides retained their activity in the presence of serum and displayed a low propensity toward resistance development in MRSA cells. Moreover, the observed synergistic potential of Ana-10 with conventional antibiotics could be vital in resurrecting discarded antibiotics. Thus, this study provides us with an exciting lead, Ana-10, for further development against biofilm-based chronic S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , beta-Lactamas , Humanos , Animales , Ratones , alfa-MSH , Staphylococcus aureus
3.
J Inorg Biochem ; 222: 111494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34091095

RESUMEN

Curcumin is a tantalizing molecule with multifaceted therapeutic potentials. However, its therapeutic applications are severely hampered because of poor bioavailability, attributed to its instability and aqueous insolubility. In an attempt to overcome this inherent limitation and develop curcumin-based antibacterials, we had earlier synthesized and characterized a metal complex of Cu(II) with curcumin, having the formula [Cu(Curcumin)(OCOCH3)(H2O)], hereafter referred to as Cu(Cur). In this study, the complex, i.e., Cu(Cur), was investigated for its stability and antibacterial activity along with its possible mechanism of action in comparison to the parent molecule, curcumin. Complex formation resulted in improved stability as Cu(Cur) was found to be highly stable under different physiological conditions. Such improved stability was verified with the help of UV-Vis spectroscopy and HPLC. With improved stability, Cu(Cur) exhibited potent and significantly enhanced activity over curcumin against both E. coli and S. aureus. Calcein leakage assay revealed that the complex triggered immediate membrane permeabilization in S. aureus. This membrane disruptive mode of action was further corroborated by microscopic visualization. The excellent potency of the complex was augmented by its safe toxicological profile as it was non-hemolytic and non-cytotoxic towards mammalian cells, making it a suitable candidate for in vivo investigations. Altogether, this investigation is a critical appraisal that advocates the antibacterial potential of this stable, membrane-targeting and non-toxic complex, thereby presenting new perspectives for its therapeutic application against bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Células 3T3 , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cobre/química , Curcumina/toxicidad , Escherichia coli/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
4.
ACS Omega ; 5(44): 28425-28440, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33195893

RESUMEN

Stationary phase Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has been widely associated with many persistent infections as well as biofilm-associated infections, which are challenging due to their increasing antibiotic resistance. α-Melanocyte stimulating hormone (α-MSH) is an antimicrobial peptide (AMP) with well-established potent activity against S. aureus , but little is known about its antimicrobial efficacy against the stationary phase of the bacteria. We investigated the in vitro activities of two palmitoylated analogues, Pal-α-MSH(6-13) and Pal-α-MSH(11-13), of the C-terminal fragments of α-MSH against biofilm-producing strains of methicillin-sensitive S. aureus (MSSA) and MRSA. While both the peptides demonstrated anti-staphylococcal efficacy, Pal-α-MSH(11-13) emerged as the most effective AMP as palmitoylation led to a remarkable enhancement in its activity against stationary phase bacteria. Similar to α-MSH, both the designed analogues were membrane-active and exhibited improved bacterial membrane depolarization and permeabilization, as further confirmed via electron microscopy studies. Of the two peptides, Pal-α-MSH(11-13) was able to retain its activity in the presence of standard microbiological media, which otherwise is a major limiting factor toward the therapeutic use of α-MSH-based peptides. More importantly, Pal-α-MSH(11-13) was also highly effective in inhibiting the formation of biofilms. Furthermore, it did not lead to resistance development in MRSA cells even upon 18 serial passages at sub-MIC concentrations. These observations support the potential use of Pal-α-MSH(11-13) in the treatment of planktonic as well as sessile S. aureus infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...