Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 137(24): 7592-5, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26057379

RESUMEN

Firefly luciferase produces light by converting substrate beetle luciferin into the corresponding adenylate that it subsequently oxidizes to oxyluciferin, the emitter of bioluminescence. We have confirmed the generally held notions that the oxidation step is initiated by formation of a carbanion intermediate and that a hydroperoxide (anion) is involved. Additionally, structural evidence is presented that accounts for the delivery of oxygen to the substrate reaction site. Herein, we report key convincing spectroscopic evidence of the participation of superoxide anion in a related chemical model reaction that supports a single electron-transfer pathway for the critical oxidative process. This mechanism may be a common feature of bioluminescence processes in which light is produced by an enzyme in the absence of cofactors.


Asunto(s)
Luciérnagas/enzimología , Luciferasas de Luciérnaga/metabolismo , Animales , Transporte de Electrón , Electrones , Luciérnagas/química , Luciérnagas/metabolismo , Luciferina de Luciérnaga/química , Luciferina de Luciérnaga/metabolismo , Luciferasas de Luciérnaga/química , Luminiscencia , Modelos Moleculares , Oxidación-Reducción , Superóxidos/química , Superóxidos/metabolismo
2.
Biochemistry ; 53(40): 6287-9, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25264115

RESUMEN

We report the enhanced bioluminescence properties of a chimeric enzyme (PpyLit) that contains the N-domain of recombinant Photinus pyralis luciferase joined to the C-domain of recombinant Luciola italica luciferase. Compared to the P. pyralis enzyme, the novel PpyLit chimera exhibited 1.8-fold enhanced flash-height specific activity, 2.0-fold enhanced integration-based specific activity, 2.9-fold enhanced catalytic efficiency (kcat/Km), and a 1.4-fold greater bioluminescence quantum yield. The results of this study provide an underlying basis of this unusual example of a chimeric enzyme with enhanced catalytic properties that are not simply the sum of the contributions of the two luciferases.


Asunto(s)
Luciérnagas/enzimología , Luciferasas de Luciérnaga/química , Proteínas Recombinantes de Fusión/química , Adenosina Trifosfato/química , Animales , Pruebas de Enzimas , Luciferina de Luciérnaga/química , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Mediciones Luminiscentes , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
3.
Photochem Photobiol ; 90(1): 247-51, 2014 01.
Artículo en Inglés | MEDLINE | ID: mdl-24004150

RESUMEN

The marine annelid Chaetopterus variopedatus produces bioluminescence by an unknown and potentially novel mechanism. We have advanced the study of this fascinating phenomenon, which has not been investigated for nearly 60 years after initial studies were first reported for this species. Here, we show that the luminous slime produced by the worm exhibits blue fluorescence that matches the bioluminescence emission. This result suggests that the oxyluciferin emitter is present. However, while the blue fluorescence decays over time green fluorescence is increasingly revealed that is likely associated with products of the luminescence reaction. LC/MS and fluorescence analysis of harvested luminescent material revealed riboflavin as the major green fluorescent component. Riboflavin is usually associated with the mechanism of light production in bacteria, yet luminous bacteria were not found in the worm mucus, and accordingly were not reported to be directly responsible for the light emission, which is under nervous control in the worm. We therefore propose a hypothesis in which riboflavin or a structurally related derivative serves as the emitter in the worm's light producing reaction.


Asunto(s)
Moco/química , Poliquetos/química , Poliquetos/metabolismo , Riboflavina/química , Animales , Luminiscencia , Espectrometría de Masa por Ionización de Electrospray
4.
Biochemistry ; 51(49): 9807-13, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23164087

RESUMEN

Five novel firefly luciferin analogues in which the benzothiazole ring system of the natural substrate was replaced with benzimidazole, benzofuran, benzothiophene, benzoxazole, and indole were synthesized. The fluorescence, bioluminescence, and kinetic properties of the compounds were evaluated with recombinant Photinus pyralis wild type luciferase. With the exception of indole, all of the substrates containing heterocycle substitutions produced readily measurable flashes of light with luciferase. Compared to that of luciferin, the intensities ranged from 0.3 to 4.4% in reactions with varying pH optima and times to reach maximal intensity. The heteroatom changes influenced both the fluorescence and bioluminescence emission spectra, which displayed maxima of 479-528 and 518-574 nm, respectively. While there were some interesting trends in the spectroscopic and bioluminescence properties of this group of structurally similar substrate analogues, the most significant findings were associated with the benzothiophene-containing compound. This synthetic substrate produced slow decay glow kinetics that increased the total light-based specific activity of luciferase more than 4-fold versus the luciferin value. Moreover, over the pH range of 6.2-9.4, the emission maximum is 523 nm, an unusual 37 nm blue shift compared to that of the natural substrate. The extraordinary bioluminescence properties of the benzothiophene luciferin should translate into greater sensitivity for analyte detection in a wide variety of luciferase-based applications.


Asunto(s)
Luciferina de Luciérnaga/química , Compuestos Heterocíclicos/química , Luminiscencia , Espectrofotometría Ultravioleta
5.
J Am Chem Soc ; 133(29): 11088-91, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21707059

RESUMEN

According to the domain alternation mechanism and crystal structure evidence, the acyl-CoA synthetases, one of three subgroups of a superfamily of adenylating enzymes, catalyze adenylate- and thioester-forming half-reactions in two different conformations. The enzymes accomplish this by presenting two active sites through an ~140° rotation of the C-domain. The second half-reaction catalyzed by another subgroup, the beetle luciferases, is a mechanistically dissimilar oxidative process that produces bioluminescence. We have demonstrated that a firefly luciferase variant containing cysteine residues at positions 108 and 447 can be intramolecularly cross-linked by 1,2-bis(maleimido)ethane, trapping the enzyme in a C-domain-rotated conformation previously undocumented in the available luciferase crystal structures. The cross-linked luciferase cannot adenylate luciferin but is nearly fully capable of bioluminescence with synthetic luciferyl adenylate because it retains the ability to carry out the oxidative half-reaction. The cross-linked luciferase is apparently trapped in a conformation similar to those adopted by acyl-CoA synthetases as they convert acyl adenylates into the corresponding CoA thioesters.


Asunto(s)
Luciérnagas/enzimología , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/metabolismo , Secuencia de Aminoácidos , Animales , Luciérnagas/genética , Luciérnagas/metabolismo , Luciferina de Luciérnaga/metabolismo , Luciferasas de Luciérnaga/genética , Luminiscencia , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA