Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107284, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38614208

RESUMEN

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.

2.
Chem Commun (Camb) ; 59(47): 7240-7242, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222285

RESUMEN

We herein describe the cell-specific release of alcohol-containing payloads via a sulfatase-sensitive linker in antibody-drug conjugates (ADCs). The linker shows efficient sulfatase-mediated release and high stability in human and mouse plasma. In vitro evaluation demonstrates potent antigen dependent toxicity towards breast cancer cell lines.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Ratones , Humanos , Inmunoconjugados/farmacología , Etanol , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Matrix Biol ; 111: 307-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878760

RESUMEN

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondina 1/metabolismo , Animales , Colágeno/metabolismo , Endocitosis , Ligandos , Ratones , Ratones Noqueados , Proteómica , Trombospondina 1/genética
4.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198964

RESUMEN

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

5.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768883

RESUMEN

Malignant mesothelioma (MM) is a highly aggressive cancer with limited therapeutic options. We have previously shown that the endocytic collagen receptor, uPARAP, is upregulated in certain cancers and can be therapeutically targeted. Public RNA expression data display uPARAP overexpression in MM. Thus, to evaluate its potential use in diagnostics and therapy, we quantified uPARAP expression by immunohistochemical H-score in formalin-fixed paraffin-embedded bioptic/surgical human tissue samples and tissue microarrays. We detected pronounced upregulation of uPARAP in the three main MM subtypes compared to non-malignant reactive mesothelial proliferations, with higher expression in sarcomatoid and biphasic than in epithelioid MM. The upregulation appeared to be independent of patients' asbestos exposure and unaffected after chemotherapy. Using immunoblotting, we demonstrated high expression of uPARAP in MM cell lines and no expression in a non-malignant mesothelial cell line. Moreover, we showed the specific internalization of an anti-uPARAP monoclonal antibody by the MM cell lines using flow cytometry-based assays and confocal microscopy. Finally, we demonstrated the sensitivity of these cells towards sub-nanomolar concentrations of an antibody-drug conjugate formed with the uPARAP-directed antibody and a potent cytotoxin that led to efficient, uPARAP-specific eradication of the MM cells. Further studies on patient cohorts and functional preclinical models will fully reveal whether uPARAP could be exploited in diagnostics and therapeutic targeting of MM.


Asunto(s)
Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Mesotelioma Maligno/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Expresión Génica , Humanos , Inmunoconjugados/metabolismo , Masculino , Lectinas de Unión a Manosa/fisiología , Glicoproteínas de Membrana/fisiología , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/fisiopatología , Persona de Mediana Edad , Receptores de Superficie Celular/fisiología , Receptores de Colágeno/genética , Receptores de Colágeno/metabolismo , Receptores de Colágeno/fisiología , Receptores Mitogénicos/genética , Transcriptoma , Regulación hacia Arriba
6.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202300

RESUMEN

Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Comunicación Celular , Osteoclastos/metabolismo , Osteosarcoma/complicaciones , Osteosarcoma/patología , Animales , Neoplasias Óseas/diagnóstico por imagen , Remodelación Ósea , Resorción Ósea/diagnóstico , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Osteogénesis
7.
Sci Rep ; 10(1): 19138, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154487

RESUMEN

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


Asunto(s)
Neoplasias Óseas/genética , Huesos/patología , Proliferación Celular/genética , Neoplasias Pulmonares/genética , Metaloproteinasa 14 de la Matriz/genética , Osteosarcoma/genética , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Huesos/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Osteosarcoma/metabolismo , Osteosarcoma/secundario
8.
J Biol Chem ; 295(27): 9157-9170, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32424040

RESUMEN

C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.


Asunto(s)
Colectinas/metabolismo , Endocitosis/fisiología , Receptores Mitogénicos/genética , Animales , Células CHO , Proteínas Portadoras/metabolismo , Colágeno/metabolismo , Cricetulus , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C , Receptor de Manosa , Lectina de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa , Glicoproteínas de Membrana/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Receptores de Superficie Celular , Receptores de Colágeno/metabolismo , Receptores Mitogénicos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
9.
Cell Mol Life Sci ; 77(16): 3161-3176, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32100084

RESUMEN

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.


Asunto(s)
Colágeno/inmunología , Animales , Endocitosis/inmunología , Matriz Extracelular/inmunología , Fibrosis/inmunología , Humanos , Neoplasias/inmunología
10.
JCI Insight ; 4(19)2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31465300

RESUMEN

Excessive vascular remodeling is characteristic of hemophilic arthropathy (HA) and may contribute to joint bleeding and the progression of HA. Mechanisms for pathological vascular remodeling after hemophilic joint bleeding are unknown. In hemophilia, activation of thrombin-activatable fibrinolysis inhibitor (TAFI) is impaired, which contributes to joint bleeding and may also underlie the aberrant vascular remodeling. Here, hemophilia A (factor VIII-deficient; FVIII-deficient) mice or TAFI-deficient mice with transient (antibody-induced) hemophilia A were used to determine the role of FVIII and TAFI in vascular remodeling after joint bleeding. Excessive vascular remodeling and vessel enlargement persisted in FVIII-deficient and TAFI-deficient mice, but not in transient hemophilia WT mice, after similar joint bleeding. TAFI-overexpression in FVIII-deficient mice prevented abnormal vessel enlargement and vascular leakage. Age-related vascular changes were observed with FVIII or TAFI deficiency and correlated positively with bleeding severity after injury, supporting increased vascularity as a major contributor to joint bleeding. Antibody-mediated inhibition of uPA also prevented abnormal vascular remodeling, suggesting that TAFI's protective effects include inhibition of uPA-mediated plasminogen activation. In conclusion, the functional TAFI deficiency in hemophilia drives maladaptive vascular remodeling in the joints after bleeding. These mechanistic insights allow targeted development of potentially new strategies to normalize vascularity and control rebleeding in HA.


Asunto(s)
Carboxipeptidasa B2/genética , Carboxipeptidasa B2/metabolismo , Factor VIII/genética , Hemartrosis/complicaciones , Hemofilia A/complicaciones , Hemofilia A/genética , Remodelación Vascular/fisiología , Animales , Modelos Animales de Enfermedad , Factor VIII/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Hemartrosis/patología , Hemofilia A/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transcriptoma
11.
J Cell Biol ; 218(1): 333-349, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30366943

RESUMEN

Collectins such as mannose-binding lectin (MBL) and surfactant protein D (SP-D) become temporarily deposited in extravascular compartments after tissue injury and perform immune-stimulatory or inflammation-limiting functions. However, their turnover mechanisms, necessary to prevent excessive tissue damage, are virtually unknown. In this study, we show that fibroblasts in injured tissues undertake the clearance of collectins by using the endocytic collagen receptor uPARAP. In cellular assays, several types of collectins were endocytosed in a highly specific uPARAP-dependent process, not shared by the closely related receptor MR/CD206. When introduced into dermis or bleomycin-injured lungs of mice, collectins MBL and SP-D were endocytosed and routed for lysosomal degradation by uPARAP-positive fibroblasts. Fibroblast-specific expression of uPARAP governed endogenous SP-D levels and overall survival after lung injury. In lung tissue from idiopathic pulmonary fibrosis patients, a strong up-regulation of uPARAP was observed in fibroblasts adjacent to regions with SP-D secretion. This study demonstrates a novel immune-regulatory function of fibroblasts and identifies uPARAP as an endocytic receptor in immunity.


Asunto(s)
Fibroblastos/inmunología , Lesión Pulmonar/inmunología , Lectina de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/inmunología , Glicoproteínas de Membrana/inmunología , Fibrosis Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Receptores de Superficie Celular/inmunología , Animales , Bleomicina/administración & dosificación , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Endocitosis , Fibroblastos/patología , Expresión Génica , Humanos , Inmunidad Innata , Interleucina-6/genética , Interleucina-6/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/mortalidad , Lisosomas/inmunología , Lisosomas/metabolismo , Receptor de Manosa , Lectina de Unión a Manosa/genética , Lectinas de Unión a Manosa/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteolisis , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/mortalidad , Proteína D Asociada a Surfactante Pulmonar/genética , Receptores de Superficie Celular/genética , Análisis de Supervivencia
12.
Matrix Biol Plus ; 1: 100003, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33543002

RESUMEN

Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C - CCR2 + and Ly6C - CCR2 low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C + CCR2 + macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C + CCR2 + macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines.

13.
Nat Commun ; 9(1): 5178, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518756

RESUMEN

The development of new lymphatic vessels occurs in many cancerous and inflammatory diseases through the binding of VEGF-C to its receptors, VEGFR-2 and VEGFR-3. The regulation of VEGFR-2/VEGFR-3 heterodimerisation and its downstream signaling in lymphatic endothelial cells (LECs) remain poorly understood. Here, we identify the endocytic receptor, uPARAP, as a partner of VEGFR-2 and VEGFR-3 that regulates their heterodimerisation. Genetic ablation of uPARAP leads to hyperbranched lymphatic vasculatures in pathological conditions without affecting concomitant angiogenesis. In vitro, uPARAP controls LEC migration in response to VEGF-C but not VEGF-A or VEGF-CCys156Ser. uPARAP restricts VEGFR-2/VEGFR-3 heterodimerisation and subsequent VEGFR-2-mediated phosphorylation and inactivation of Crk-II adaptor. uPARAP promotes VEGFR-3 signaling through the Crk-II/JNK/paxillin/Rac1 pathway. Pharmacological Rac1 inhibition in uPARAP knockout mice restores the wild-type phenotype. In summary, our study identifies a molecular regulator of lymphangiogenesis, and uncovers novel molecular features of VEGFR-2/VEGFR-3 crosstalk and downstream signaling during VEGF-C-driven LEC sprouting in pathological conditions.


Asunto(s)
Linfangiogénesis , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Dimerización , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Receptores de Superficie Celular/genética , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/química , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
14.
Blood ; 132(15): 1593-1603, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30026184

RESUMEN

Joint bleeds are common in congenital hemophilia but rare in acquired hemophilia A (aHA) for reasons unknown. To identify key mechanisms responsible for joint-specific bleeding in congenital hemophilia, bleeding phenotypes after joint injury and tail transection were compared in aHA wild-type (WT) mice (receiving an anti-factor VIII [FVIII] antibody) and congenital HA (FVIII-/-) mice. Both aHA and FVIII-/- mice bled severely after tail transection, but consistent with clinical findings, joint bleeding was notably milder in aHA compared with FVIII-/- mice. Focus was directed to thrombin-activatable fibrinolysis inhibitor (TAFI) to determine its potentially protective effect on joint bleeding in aHA. Joint bleeding in TAFI-/- mice with anti-FVIII antibody was increased, compared with WT aHA mice, and became indistinguishable from joint bleeding in FVIII-/- mice. Measurements of circulating TAFI zymogen consumption after joint injury indicated severely defective TAFI activation in FVIII-/- mice in vivo, consistent with previous in vitro analyses in FVIII-deficient plasma. In contrast, notable TAFI activation was observed in aHA mice, suggesting that TAFI protected aHA joints against bleeding. Pharmacological inhibitors of fibrinolysis revealed that urokinase-type plasminogen activator (uPA)-induced fibrinolysis drove joint bleeding, whereas tissue-type plasminogen activator-mediated fibrinolysis contributed to tail bleeding. These data identify TAFI as an important modifier of hemophilic joint bleeding in aHA by inhibiting uPA-mediated fibrinolysis. Moreover, our data suggest that bleed protection by TAFI was absent in congenital FVIII-/- mice because of severely defective TAFI activation, underscoring the importance of clot protection in addition to clot formation when considering prohemostatic strategies for hemophilic joint bleeding.


Asunto(s)
Carboxipeptidasa B2/metabolismo , Hemartrosis/etiología , Hemartrosis/metabolismo , Hemofilia A/complicaciones , Animales , Carboxipeptidasa B2/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Hemartrosis/genética , Hemofilia A/genética , Hemofilia A/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
15.
Cell Rep ; 21(13): 3662-3671, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281816

RESUMEN

Physiologic turnover of interstitial collagen is mediated by a sequential pathway in which collagen is fragmented by pericellular collagenases, endocytosed by collagen receptors, and routed to lysosomes for degradation by cathepsins. Here, we use intravital microscopy to investigate if malignant tumors, which are characterized by high rates of extracellular matrix turnover, utilize a similar collagen degradation pathway. Tumors of epithelial, mesenchymal, or neural crest origin all display vigorous endocytic collagen degradation. The cells engaged in this process are identified as tumor-associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation.


Asunto(s)
Movimiento Celular , Colágeno/metabolismo , Endocitosis , Inflamación/patología , Macrófagos/patología , Monocitos/patología , Neoplasias/patología , Proteolisis , Animales , Polaridad Celular , Matriz Extracelular/metabolismo , Lectinas Tipo C , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa , Ratones Endogámicos C57BL , Neoplasias/genética , Ratas , Receptores CCR2/metabolismo , Receptores de Superficie Celular , Transcriptoma/genética
16.
Oncotarget ; 8(27): 44605-44624, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28574834

RESUMEN

A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inmunoconjugados/farmacología , Lectinas de Unión a Manosa/antagonistas & inhibidores , Glicoproteínas de Membrana/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores Mitogénicos/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular , Modelos Animales de Enfermedad , Endocitosis , Expresión Génica , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/mortalidad , Leucemia/patología , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Terapia Molecular Dirigida , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/mortalidad , Sarcoma/patología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Cell Biochem ; 118(6): 1590-1595, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922193

RESUMEN

As a crucial step in ECM remodeling, collagen degradation occurs through different processes, including both extracellular and intracellular degradation. The extracellular pathways of collagen degradation require secretion of collagenolytic proteases, whereas intracellular collagen degradation occurs in the lysosomal compartment after uptake, involving either pre-cleaved or intact fibrillar collagen. The endocytic collagen receptor uPARAP/Endo180 plays an important role in internalization of large collagen degradation products, whereas its role in the phagocytosis of fibrillar collagen has been debated. In fact, the role of this receptor in regular collagen phagocytosis in vivo has not been established. In this study, we have studied the role of uPARAP in the phagocytosis of collagen fibrils in vivo by analyzing different connective tissues of mice lacking uPARAP. Using transmission electron microscopy (TEM), we found that fibroblasts in the periosteum of tibia and calvaria, as well as in the periodontal ligament of molar and incisor, phagocytosed collagen fibrils independently of uPARAP. Quantification of phagocytosed collagen in the periodontal ligament of uPARAP-deficient mice and controls revealed no difference in the amount of fibrillar collagen taken up by uPARAP-deficient mice. The findings show that under in vivo conditions uPARAP does not play a role in the phagocytic uptake of collagen fibrils by fibroblasts. Consequently, the cellular uptake of collagen fibrils and collagen cleavage products probably occurs through fundamentally different pathways. J. Cell. Biochem. 118: 1590-1595, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Colágenos Fibrilares/metabolismo , Fibroblastos/fisiología , Glicoproteínas de Membrana/metabolismo , Ligamento Periodontal/citología , Periostio/citología , Receptores de Superficie Celular/metabolismo , Animales , Matriz Extracelular/metabolismo , Fibroblastos/ultraestructura , Incisivo/citología , Glicoproteínas de Membrana/genética , Ratones , Microscopía Electrónica de Transmisión , Diente Molar/citología , Fagocitosis , Receptores de Superficie Celular/genética , Cráneo/citología , Tibia/citología
18.
Biochem J ; 473(15): 2359-68, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27247422

RESUMEN

The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain (cysteine-rich or CysR domain) folds into a new and unique conformation different from the ß-trefoil fold of typical CysR domains. The so-called long loop regions (LLRs) of the C-type lectin-like domain (CTLD) 1 and 2 (the third and fourth domain) mediate the direct contacts between these domains. These LLRs undergo a Ca(2+)-dependent conformational change, and this is likely to be the key structural determinant affecting the overall conformation of uPARAP. Our results provide a molecular mechanism to support the structural flexibility of uPARAP, and shed light on the structural flexibility of other members of the MR family.


Asunto(s)
Calcio/metabolismo , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
19.
J Pathol ; 238(1): 120-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466547

RESUMEN

In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.


Asunto(s)
Neoplasias Óseas/patología , Osteólisis/metabolismo , Osteosarcoma/patología , Receptores Mitogénicos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Invasividad Neoplásica , Osteoclastos/patología , Osteólisis/etiología , Osteólisis/patología
20.
Int J Oncol ; 47(4): 1177-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26316068

RESUMEN

The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.


Asunto(s)
Colágeno/metabolismo , Neoplasias/patología , Receptores Mitogénicos/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...