Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Appl Microbiol ; 47(4): 126516, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38772267

RESUMEN

The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.

2.
Plants (Basel) ; 11(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559599

RESUMEN

Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.

3.
Microorganisms ; 10(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422374

RESUMEN

Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).

4.
Syst Appl Microbiol ; 45(4): 126333, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35605315

RESUMEN

A group of isolates of the genus Luteimonas was characterised, which represented a specific component of the healthy core microbiome of Fraxinus excelsior in forest districts with a high infection rate of H. fraxineus, the causal agent of ash dieback. Based on phylogenomic and phenotypic analyses, a clear differentiation from related Luteimonas species was shown. Comparisons of the overall genome relatedness indices with the closest phylogenetic neighbours resulted in values below the recommended species cut-off levels. In addition, differences in several physiological and chemotaxonomic traits allowed a clear demarcation from the type strains of closely related species. Conclusively, the strain group was considered to represent a novel species in the genus Luteimonas, for which the name Luteimonas fraxinea sp. nov. is proposed, with strain D4P002T (=DSM 113273T = LMG 32455T) as the type strain. A functional analysis of the genome revealed features particularly associated with attachment, biofilm production and motility, indicating the ability of D4P002T to effectively colonise ash leaves. In nursery trials, ash seedlings inoculated with this strain showed suppression of the pathogen over a period of three years. This effect was accompanied by a significant shift in the bacterial microbiome of the plants. Altogether, the exclusive occurrence in the microbiome of tolerant ash trees, the genetic background and the results of the inoculation experiment suggest that strain D4P002T may suppress the penetration and spreading of H. fraxineus in or on ash leaves via colonisation resistance or trigger a priming effect of plant defences against the pathogen.


Asunto(s)
Fraxinus , Xanthomonadaceae , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fraxinus/genética , Fraxinus/microbiología , Genómica , Filogenia , ARN Ribosómico 16S/genética , Xanthomonadaceae/genética
5.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36861375

RESUMEN

Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.


Asunto(s)
Desnitrificación , Paracoccus , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Genómica , Paracoccus/genética , Formaldehído
6.
Artículo en Inglés | MEDLINE | ID: mdl-34016249

RESUMEN

A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.


Asunto(s)
Pradera , Filogenia , Pseudomonas/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Alemania , Nitratos/metabolismo , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Front Microbiol ; 11: 590944, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193255

RESUMEN

The invasive ascomycete Hymenoscyphus fraxineus has been threatening Fraxinus excelsior populations throughout Europe for over two decades. Since the infection and first colonization by the pathogen occurs in leaves, leaf-colonizing microorganisms have been discussed as a barrier and as possible biocontrol agents against the disease. To identify fungal groups with health-supporting potential, we compared the fungal microbiota of compound leaves from susceptible and tolerant ash trees in four ash stands with high H. fraxineus exposure. The fungal communities were analyzed both culture-independently by ITS2 amplicon sequencing and by the taxonomic classification of 1,704 isolates using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) or sequencing of the entire ITS region. The fungal community structure did not show significant differences depending on the health status. However, for several OTUs and a MALDI group, a significantly higher abundance was found in tolerant ash trees. Thus, the yeast Papiliotrema flavescens was significantly increased and accounted for 12.3% of the mycobiome of tolerant ashes (OTU0003), and it had also a distinctly higher abundance among the isolates. The filamentous ascomycete Sarocladium strictum was increased 24-fold among the isolates of tolerant trees, but its abundance was comparably low. An in vitro screening for the growth inhibition of the pathogen via cocultivation resulted in 28 yeast-like isolates and 79 filamentous fungi with antagonistic activity. A statistical cocultivation test on two H. fraxineus strains confirmed six of the yeast-like isolates that suppressed H. fraxineus significantly, from 39-50%, two of them through a fungicidal effect. The highest inhibition rates among the yeasts were found for three isolates belonging to Aureobasidium pullulans and P. flavescens. The cocultivation test of the filamentous isolates revealed higher effects compared to the yeasts. Four isolates showed significant inhibition of both H. fraxineus strains with a rate of 72-100%, and five further isolates inhibited only one H. fraxineus strain significantly. The most effective isolates were members of the genus Cladosporium. During the next step, in planta tests will be necessary to verify the efficacy of the antagonistic isolates and to assess their suitability as biocontrol agents.

8.
Front Microbiol ; 11: 966, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547506

RESUMEN

In the last few years, the alarming spread of Hymenoscyphus fraxineus, the causal agent of ash dieback, has resulted in a substantial threat to native ash stands in central and northern Europe. Since leaves and leaf petioles are the primary infection sites, phyllosphere microorganisms are presumed to interact with the pathogen and are discussed as a source of biocontrol agents. We studied compound leaves from susceptible and visible infection-free trees in four ash stands with a high likelihood of infection to assess a possible variation in the bacterial microbiota, depending on the health status of the trees. The bacterial community was analyzed by culture-independent 16S rRNA gene amplicon sequencing and through the isolation and taxonomic classification of 2,589 isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The bacterial community structure did not show significant differences. However, a set of amplicon sequence variants (ASVs) and MALDI groups belonging to Luteimonas, Aureimonas, Pseudomonas, Bacillus, and Paenibacillus were distinctly increased in tolerant trees, which may be associated with the ability of the tree to resist the pathogen. The most obvious differences were observed for Luteimonas, a genus that is also exclusively present in the healthy core microbiome. In a first in vitro screen of antagonists, approximately 11% of total isolates suppressed the growth of H. fraxineus, but a statistical test with two different H. fraxineus strains confirmed only the antagonistic activity of 8% of these isolates. The antagonistic isolates were assigned to Bacillus velezensis, Pantoea vagans, and Pseudomonas caspiana. Overall, our study provides a set of isolates or phylogenetic groups that might be involved in the process that prevents the penetration and spread of H. fraxineus. In the next step, in planta experiments are required with a longer period of exposure to H. fraxineus to evaluate effective isolates or consortia of isolates acting through direct antagonism or competition or indirectly by inducing resistance.

9.
Mycotoxin Res ; 36(2): 147-158, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31755073

RESUMEN

Fluorescent pseudomonads colonizing wheat ears have a high antagonistic potential against phytopathogenic fungi. To check this hypothesis, the bacterial antagonist Pseudomonas simiae 9 rif+/kan+ was spray-inoculated onto the ears of winter wheat in a locally demarcated experimental field plot. Fusarium and Alternaria fungi naturally occurring on the ears and the formation of their mycotoxins in the ripe grains were investigated. Inoculated bacteria were recovered from the plants in the inoculation cell, but not in the untreated neighboring plots or in the air above the plants. Growth of fusaria and alternaria on the ears was not influenced by the bacterial antagonist. Wheat kernels were co-inoculated in vitro with the antagonist and one mycotoxin-producing strain of Fusarium and Alternaria, respectively. Mycotoxin production was almost completely suppressed in these approaches. Concentrations of zearalenone, deoxynivalenol, alternariol, and tenuazonic acid were also significantly reduced in ripe grains in the field, but to a lesser extent than in vitro. The results of this and previous studies suggest that widespread biological control of the growth of fusaria and alternaria and their mycotoxin formation by naturally occurring pseudomonads with antagonistic activity is rather unlikely.


Asunto(s)
Alternaria/crecimiento & desarrollo , Antibiosis , Fusarium/crecimiento & desarrollo , Micotoxinas/análisis , Pseudomonas/fisiología , Triticum/microbiología , Alternaria/patogenicidad , Agentes de Control Biológico , Fusarium/patogenicidad , Lactonas/análisis , Ácido Tenuazónico/análisis , Tricotecenos/análisis , Triticum/química , Zearalenona/análisis
10.
Artículo en Inglés | MEDLINE | ID: mdl-33502311

RESUMEN

The genera Proteus and Cosenzaea are closely related members of the family Morganellaceae. The genus Cosenzaea consists of the species Cosenzaea myxofaciens originally separated from the genus Proteus by rpoB gene analysis. Due to the high similarity of the 16S rRNA genes between species of both genera, the taxonomic status is here re-evaluated by a genome-based approach. Based on a core genome phylogeny and genome relatedness indices, it is shown that the taxonomy and nomenclature given for the basonym Proteus myxofaciens is more appropriate. Therefore, we propose to use this name in preference. Furthermore, the species status of Proteus terrae and Proteus cibarius was reassessed. Both species are related at subspecies level by digital DNA-DNA hybridization (dDDH) analysis. Additionally, average amino acid identity (AAI) and average nucleotide identity (ANI) do not support a separate species status, and therefore it is proposed to classify P. cibarius as a subspecies of P. terrae. Consequently, both species are being renamed Proteus terrae subsp. cibarius subsp. nov. and Proteus terrae subsp. terrae subsp. nov., respectively. The genome relatedness indices revealed a close relationship of the Proteus genomospecies 5 with P. terrae subsp. terrae. Thus, it has been assigned to the same subspecies.

11.
Front Microbiol ; 9: 2124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250459

RESUMEN

Natural control of phytopathogenic microorganisms is assumed as a priority function of the commensal plant microbiota. In this study, the suitability of fluorescent pseudomonads in the phyllosphere of crop plants as natural control agents was evaluated. Under field conditions, ears of winter wheat were found to be colonized with high consistency and at a high density by pseudomonads at the late milk dough stage. Isolates of these bacteria were evaluated for their potential to protect the plants from phytopathogenic Alternaria and Fusarium fungi. More Pseudomonas isolates were antagonistically active against alternaria than against fusaria in the dual culture test. The alternaria responded species-specifically and more sensitively to bacterial antagonism than the strain-specific reacting fusaria. A total of 110 randomly selected Pseudomonas isolates were screened for genes involved in the biosynthesis of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, pyoluteorin, and pyrrolnitrin. The key gene for production of the phloroglucinol was found in none of these isolates. At least one of the genes, encoding the biosynthesis of the other antibiotics was detected in 81% of the isolates tested. However, the antagonistic effect found in the dual culture assay was not necessarily associated with the presence of these antibiotic genes. Wheat grains as natural substrate were inoculated with selected antagonistic Pseudomonas isolates and Alternaria and Fusarium strains, respectively. The fungal growth was only slightly delayed, but the mycotoxin production was significantly reduced in most of these approaches. In conclusion, the distribution of phytopathogenic fungi of the genera Alternaria and Fusarium in the field is unlikely to be inhibited by naturally occurring pseudomonads, also because the bacterial antagonists were not evenly distributed in the field. However, pseudomonads can reduce the production of Alternaria and Fusarium mycotoxins in wheat grains and thus have the potential to improve the crop quality.

12.
Front Microbiol ; 8: 199, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28232827

RESUMEN

Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents.

13.
Int J Syst Evol Microbiol ; 66(6): 2354-2361, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27030972

RESUMEN

In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene nirK, encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene nosZ indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas N2O. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes recA and atpD demonstrated that the investigated soil isolate belongs to the genus Rhizobium. The closest phylogenetic neighbours were the type strains of Rhizobium. subbaraonis and Rhizobium. halophytocola. The close relationship with R. subbaraonis was reflected by similarity analysis of the recA and atpD genes and their amino acid positions. DNA-DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus Rhizobium, for which the name Rhizobium azooxidifex sp. nov. (type strain Po 20/26T=DSM 100211T=LMG 28788T) is proposed.


Asunto(s)
Óxido Nítrico/metabolismo , Filogenia , Rhizobium/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desnitrificación , Ácidos Grasos/química , Genes Bacterianos , Ciclo del Nitrógeno , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Análisis de Secuencia de ADN
14.
Front Microbiol ; 7: 209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941730

RESUMEN

The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

15.
Curr Microbiol ; 72(4): 383-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26687461

RESUMEN

Fluorescent pseudomonads isolated from wheat leaves were characterized regarding their antagonistic potential and taxonomy in relation to protect crop plants from infestation by Fusarium and Alternaria fungi causing diseases in wheat. Using a dual culture assay, inhibition of fungal growth was found for 40 isolates of 175 fluorescent pseudomonads. Twenty-two of the antagonists were able to suppress strains of Fusarium as well as Alternaria. By means of real-time qPCR, the phlD gene encoding the antibiotic 2,4-diacetylphloroglucinol was detected in 20 isolates. On the basis of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectral patterns, the isolates with antagonistic activity were assigned to the phylogenetic subgroup Pseudomonas fluorescens and the closely related Pseudomonas gessardii subgroup. The results of the study suggest that pseudomonads in the phyllosphere of crop plants may possibly contribute to natural plant protection.


Asunto(s)
Pseudomonas/fisiología , Triticum/microbiología , Antibiosis , Proteínas Bacterianas/genética , Análisis por Conglomerados , Hongos/fisiología , Hojas de la Planta/microbiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Estaciones del Año , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Antonie Van Leeuwenhoek ; 108(6): 1457-1468, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26437638

RESUMEN

In the context of studying the influence of N-fertilization on N2 and N2O flux rates in relation to the soil bacterial community composition in fen peat grassland, a group of bacterial strains was isolated that performed dissimilatory nitrate reduction to ammonium and concomitantly produced N2O. The amount of nitrous oxide produced was influenced by the C/N ratio of the medium. The potential to generate nitrous oxide was increased by higher availability of nitrate-N. Phylogenetic analysis based on the 16S rRNA and the rpoB gene sequences demonstrated that the investigated isolates belong to the genus Proteus, showing high similarity with the respective type strains of Proteus vulgaris and Proteus penneri. DNA-DNA hybridization studies revealed differences at the species level. These differences were substantiated by MALDI-TOF MS analysis and several distinct physiological characteristics. On the basis of these results, it was concluded that the soil isolates represent a novel species for which the name Proteus terrae sp. nov. (type strain N5/687(T) =DSM 29910(T) =LMG 28659(T)) is proposed.


Asunto(s)
Amoníaco/metabolismo , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Proteus/clasificación , Proteus/aislamiento & purificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Carbono/metabolismo , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/genética , Deinococcus , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Hibridación de Ácido Nucleico , Filogenia , Proteus/genética , Proteus/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Int J Syst Evol Microbiol ; 61(Pt 5): 1039-1047, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20511458

RESUMEN

In the context of studying the effects of transgenic fructan-producing potatoes on the community structure of phyllosphere bacteria, a group of strains closely related to the species Leifsonia ginsengi was isolated. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the new isolates and L. ginsengi DSM 19088(T) formed a lineage at the genus level and this finding was supported by chemotaxonomic characterization. The peptidoglycan type of the representative isolate, K134/01(T), and L. ginsengi DSM 19088(T) was B2γ, with d- and l-diaminobutyric acid as the diagnostic diamino acid and glycine, alanine and threo-3-hydroxyglutamic acid. The almost-complete substitution of glutamic acid by threo-3-hydroxyglutamic acid supported the differentiation of the new strains from recognized species of the genus Leifsonia. Furthermore, the detection of substantial amounts of the fatty acid cyclohexyl-C(17 : 0) in the new isolates and L. ginsengi DSM 19088(T) was a prominent chemotaxonomic feature for a clear demarcation of these strains from all genera of the family Microbacteriaceae that display the B2γ cell-wall type. Comparative phylogenetic and phenotypic analyses of the isolates and L. ginsengi DSM 19088(T) revealed the separate species status of the isolates. On the basis of these results, it is proposed that L. ginsengi should be classified as the type species of a novel genus, Herbiconiux gen. nov., with the name Herbiconiux ginsengi gen. nov., comb. nov. (type strain wged11(T) = CGMCC 4.3491(T) = JCM 13908(T) = DSM 19088(T) = NBRC 104580(T)). The phyllosphere isolates are assigned to a novel species, Herbiconiux solani sp. nov. (type strain K134/01(T) = DSM 19813(T) = LMG 24387(T) = NBRC 106740(T)).


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Rizosfera , Solanum tuberosum/microbiología , Actinomycetales/genética , Actinomycetales/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/metabolismo , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo
18.
Syst Appl Microbiol ; 33(6): 328-36, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20813476

RESUMEN

In the course of studying the influence of N-fertilization on N(2) and N(2)O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the investigated isolates belonged to the genus Paenibacillus. Sequence similarities lower than 97% in comparison to established species indicated a separate species position. Except for the peptidoglycan type (A4alpha L-Lys-D-Asp), chemotaxonomic features of the isolates matched the genus description, but differences in several physiological characteristics separated them from related species and supported their novel species status. Despite a high 16S rRNA gene sequence similarity between the clean room isolate ES_MS17(T) and the representative fen soil isolate N3/975(T), DNA-DNA hybridization studies revealed genetic differences at the species level. These differences were substantiated by MALDI-TOF MS analysis, ribotyping and several distinct physiological characteristics. On the basis of these results, it was concluded that the fen soil isolates and the clean room isolate ES_MS17(T) represented two novel species for which the names Paenibacillus uliginis sp. nov. (type strain N3/975(T)=DSM 21861(T)=LMG 24790(T)) and Paenibacillus purispatii sp. nov. (type strain ES_MS17(T)=DSM 22991(T)=CIP 110057(T)) are proposed.


Asunto(s)
Microbiología del Aire , Nitrificación , Paenibacillus/clasificación , Paenibacillus/aislamiento & purificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Desnitrificación , Ambiente Controlado , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Nave Espacial
19.
Int J Syst Evol Microbiol ; 59(Pt 6): 1331-5, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19502311

RESUMEN

The taxonomic position of a group of four strains, isolated from the phyllosphere of grasses, within the species Pseudomonas cedrina was investigated. The isolates formed a separate cluster through ribotyping and MALDI-TOF MS, which could be clearly differentiated from the type strain of P. cedrina. The differences found between the patterns of the type strain of P. cedrina and the novel isolates were more distinct than those between the type strain and recognized species of the genus Pseudomonas, which were phylogenetically related by 16S rRNA gene sequence analysis. Physiological characterization also revealed significant differences between the novel grass isolates and the type strain of P. cedrina. Siderotyping of the pyoverdines revealed identical pyoverdine-isoelectrofocusing patterns for the novel isolates and the type strain of P. cedrina. However, pyoverdine-mediated (59)Fe cross uptake studies indicated differences in the siderotype. In contrast, phylogenetic analysis based on 16S rRNA gene sequence analysis and DNA-DNA hybridization studies (reassociation value 76.4 %) supported the affiliation of the novel isolates to the species P. cedrina. As a consequence of these observations, the splitting of the species P. cedrina into two novel subspecies Pseudomonas cedrina subsp. cedrina subsp. nov. (type strain CFML 96-198(T)=CIP 105541(T)=DSM 17516(T)) and Pseudomonas cedrina subsp. fulgida subsp. nov. (type strain P 515/12(T)=DSM 14938(T)=LMG 21467(T)) is proposed.


Asunto(s)
Agua Dulce/microbiología , Poaceae/microbiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/análisis , ADN Ribosómico/análisis , Genotipo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fenotipo , Filogenia , Pseudomonas/genética , Pseudomonas/fisiología , ARN Ribosómico 16S/genética , Ribotipificación , Análisis de Secuencia de ADN , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Int J Syst Evol Microbiol ; 58(Pt 12): 2833-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19060068

RESUMEN

The taxonomic position of a group of actinobacterial strains isolated from the phyllosphere of potato plants was investigated by using a polyphasic approach. Although the similarity values for their 16S rRNA gene sequences suggested an intermediate position between Microbacterium and Agrococcus, the phylogenetic tree demonstrated a clear clustering of the representative strain, K 114/01(T), within the genus Agrococcus. The presence of 2,4-diaminobutyric acid as the diagnostic diamino acid in the cell-wall peptidoglycan of strain K 114/01(T) substantiated the affiliation to the genus Agrococcus. An analysis performed using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry revealed highly similar spectral patterns for the isolated strains, which, together with their conformity regarding a multitude of phenotypic features, supported their affiliation to the same species. Differences in several physiological features, peptidoglycan and menaquinone composition and whole-cell fatty acid profiles enabled discrimination of the phyllosphere isolates with respect to recognized Agrococcus species. As the 16S rRNA gene sequence similarity values were below 97 %, the strains isolated from the phyllosphere of potato plants represent a novel species of the genus Agrococcus, for which the name Agrococcus versicolor sp. nov. is proposed. The type strain is K 114/01(T) (=DSM 19812(T) =LMG 24386(T)).


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/fisiología , Solanum tuberosum/microbiología , Actinomycetales/química , Actinomycetales/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...