Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 36(8): 1043-52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23142846

RESUMEN

The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U(G)), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V(L)), gas holdup (ε) and overall volumetric oxygen transfer coefficient (k(L)a(L)) increase with the increase of superficial gas velocity (U(G)), while the mean circulation time (t(c)) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U(G) for U(G) ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.


Asunto(s)
Reactores Biológicos , Oxígeno/química , Movimientos del Aire , Bacterias/química , Ambiente , Diseño de Equipo , Gases , Hidrodinámica , Evaluación de Procesos y Resultados en Atención de Salud , Aguas del Alcantarillado , Temperatura , Factores de Tiempo
2.
Bioprocess Biosyst Eng ; 36(10): 1339-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23086548

RESUMEN

The theoretical and experimental aspects of the hydrodynamics and mixing in a new multi-environment bioreactor that uses the air-lift design were investigated. This study focused on the mixing characteristics, residence time distribution, liquid circulation between three zones of aerobic, microaerophilic and anoxic, and liquid displacement in the bioreactor at influent flow rates of 720-1,450 L/day and air flow rates of 15-45 L/min. The theoretical analysis of liquid displacement led to the estimation of the specific rate of liquid discharge from the bioreactor at any given influent flow rate, and the number of liquid circulations between various bioreactor zones before the discharge of a given quantity of wastewater. The ratio of mean residence time to the overall hydraulic retention time (t m/HRT) decreased with the increase of air flow rate at any given influent flow rate, and approached unity at higher air flow rates. Mixing was characterized in terms of the axial dispersion coefficient and Bodenstein number, demonstrating a linear relationship with the superficial gas velocity. A correlation was developed between the Bodenstein number and the Froude number. The study of liquid circulation between the zones showed that less than 1.5 % of the circulating liquid escapes circulation at each cycle and flows towards the outer clarifier, while the percentage of escaped liquid decreases with increasing air flow rate at a given influent flow rate. The specific rate of liquid discharge from the bioreactor increased from 0.19 to 0.69 h⁻¹ with the increase of air and influent flow rates from 15 to 45 L/min and 500 to 1,450 L/day, respectively. Under the examined operating conditions, mixed liquor circulates between 364 and 1,698 times between the aerobic, microaerophilic and anoxic zones before 99 % of its original volume is replaced by the influent wastewater.


Asunto(s)
Reactores Biológicos , Modelos Teóricos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...