Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 39(1): 2387417, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39163165

RESUMEN

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.


Asunto(s)
Simulación del Acoplamiento Molecular , Pirimidinas , SARS-CoV-2 , Sulfonas , Humanos , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Sulfonas/farmacología , Sulfonas/química , Pirimidinas/química , Pirimidinas/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Transferencia de Energía por Resonancia de Bioluminiscencia , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad
2.
Microbiol Spectr ; 12(7): e0063024, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38780257

RESUMEN

Naphthoquine is a promising candidate for antimalarial combination therapy. Its combination with artemisinin has demonstrated excellent efficacy in clinical trials conducted across various malaria-endemic areas. A co-formulated combination of naphthoquine and azithromycin has also shown high clinical efficacy for malaria prophylaxis in Southeast Asia. Developing new combination therapies using naphthoquine will provide additional arsenal responses to the growing threat of artemisinin resistance. Furthermore, due to its long half-life, the possible interaction of naphthoquine with other drugs also needs attention. However, studies on its pharmacodynamic interactions with other drugs are still limited. In this study, the in vitro interactions of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen were evaluated in the asexual stage of Plasmodium falciparum 3D7. By using the combination index analysis and the SYBR Green I-based fluorescence assay, different interaction patterns of selected drugs with naphthoquine were revealed. Curcumin showed a slight but significant synergistic interaction with naphthoquine at lower effect levels, and no antagonism was observed across the full range of effect levels for all tested ratios. Atovaquone showed a potency decline when combined with naphthoquine. For ivermectin, a significant antagonism with naphthoquine was observed at a broad range of effect levels below 75% inhibition, although no significant interaction was observed at higher effect levels. Ketotifen interacted with naphthoquine similar to ivermectin, but significant antagonism was observed for only one tested ratio. These findings should be helpful to the development of new naphthoquine-based combination therapy and the clinically reasonable application of naphthoquine-containing therapies. IMPORTANCE: Pharmacodynamic interaction between antimalarials is not only crucial for the development of new antimalarial combination therapies but also important for the appropriate clinical use of antimalarials. The significant synergism between curcumin and naphthoquine observed in this study suggests the potential value for further development of new antimalarial combination therapy. The finding of a decline in atovaquone potency in the presence of naphthoquine alerts to a possible risk of treatment or prophylaxis failure for atovaquone-proguanil following naphthoquine-containing therapies. The observation of antagonism between naphthoquine and ivermectin raised a need for concern about the applicability of naphthoquine-containing therapy in malaria-endemic areas with ivermectin mass drug administration deployed. Considering the role of atovaquone-proguanil as a major alternative when first-line artemisinin-based combination therapy is ineffective and the wide implementation of ivermectin mass drug administration in malaria-endemic countries, the above findings will be important for the appropriate clinical application of antimalarials involving naphthoquine-containing therapies.


Asunto(s)
Antimaláricos , Atovacuona , Curcumina , Interacciones Farmacológicas , Ivermectina , Cetotifen , Naftoquinonas , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Atovacuona/farmacología , Antimaláricos/farmacología , Naftoquinonas/farmacología , Humanos , Curcumina/farmacología , Ivermectina/farmacología , Cetotifen/farmacología , Sinergismo Farmacológico , Aminoquinolinas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , 1-Naftilamina/análogos & derivados
3.
Eur J Med Chem ; 258: 115601, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390509

RESUMEN

The double-stranded DNA (dsDNA) viruses represented by adenovirus and monkeypox virus, have attracted widespread attention due to their high infectivity. In 2022, the global outbreak of mpox (or monkeypox) has led to the declaration of a Public Health Emergency of International Concern. However, to date therapeutics approved for dsDNA virus infections remain limited and there are still no available treatments for some of these diseases. The development of new therapies for treating dsDNA infection is in urgent need. In this study, we designed and synthesized a series of novel disulfide-incorporated lipid conjugates of cidofovir (CDV) as potential candidates against dsDNA viruses including vaccinia virus (VACV) and adenovirus (AdV) 5. The structure-activity relationship analyses revealed that the optimum linker moiety was C2H4 and the optimum aliphatic chain length was 18 or 20 atoms. Among the synthesized conjugates, 1c exhibited more potency against VACV (IC50 = 0.0960 µM in Vero cells; IC50 = 0.0790 µM in A549 cells) and AdV5 (IC50 = 0.1572 µM in A549 cells) than brincidofovir (BCV). The transmission electron microscopy (TEM) images revealed that the conjugates could form micelles in phosphate buffer. The stability studies in the GSH environment demonstrated that the formation of micelles in phosphate buffer might protect the disulfide bond from glutathione (GSH) reduction. The dominant means of the synthetic conjugates to liberate the parent drug CDV was by enzymatic hydrolysis. Furthermore, the synthetic conjugates remained sufficiently stable in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and pooled human plasma, which indicated the possibility for oral administration. These results indicated 1c may be a broad-spectrum antiviral candidate against dsDNA viruses with potential oral administration. Moreover, modification of the aliphatic chain attached to the nucleoside phosphonate group was involved as an efficient prodrug strategy for the development of potent antiviral candidates.


Asunto(s)
Antivirales , Profármacos , Animales , Chlorocebus aethiops , Humanos , Cidofovir/farmacología , Antivirales/química , Profármacos/farmacología , Células Vero , Micelas , Citosina/farmacología , Citosina/química , Virus Vaccinia , Lípidos , Fosfatos
4.
Emerg Microbes Infect ; 12(1): 2211688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37144395

RESUMEN

ABSTRACTThe main protease (3-chymotrypsin-like protease, 3CLpro) of SARS-CoV-2 has become a focus of anti-coronavirus research. Despite efforts, drug development targeting 3CLpro has been hampered by limitations in the currently available activity assays. Additionally, the emergence of 3CLpro mutations in circulating SARS-CoV-2 variants has raised concerns about potential resistance. Both emphasize the need for a more reliable, sensitive, and facile 3CLpro assay. Here, we report an orthogonal dual reporter-based gain-of-signal assay for measuring 3CLpro activity in living cells. It builds on the finding that 3CLpro induces cytotoxicity and reporter expression suppression, which can be rescued by its inhibitor or mutation. This assay circumvents most limitations in previously reported assays, especially false positives caused by nonspecific compounds and signal interference from test compounds. It is also convenient and robust for high throughput screening of compounds and comparing the drug susceptibilities of mutants. Using this assay, we screened 1789 compounds, including natural products and protease inhibitors, with 45 compounds that have been reported to inhibit SARS-CoV-2 3CLpro among them. Except for the approved drug PF-07321332, only five of these inhibit 3CLpro in our assays: GC376; PF-00835231; S-217622; Boceprevir; and Z-FA-FMK. The susceptibilities of seven 3CLpro mutants prevalent in circulating variants to PF-07321332, S-217622, and GC376 were also assessed. Three mutants were identified as being less susceptible to PF-07321322 (P132H) and S-217622 (G15S, T21I). This assay should greatly facilitate the development of novel 3CLpro-targeted drugs and the monitoring of the susceptibility of emerging SARS-CoV-2 variants to 3CLpro inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación , Péptido Hidrolasas , Antivirales/farmacología
5.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838567

RESUMEN

The Lassa virus (LASV) causes Lassa fever, a highly infectious and lethal agent of acute viral hemorrhagic fever. At present, there are still no effective treatments available, creating an urgent need to develop novel therapeutics. Some benzimidazole compounds targeting the arenavirus envelope glycoprotein complex (GPC) are promising inhibitors of LASV. In this study, we synthesized two series of LASV inhibitors based on the benzimidazole structure. Lentiviral pseudotypes bearing the LASV GPC were established to identify virus entry inhibitors. Surface plasmon resonance (SPR) was further used to verify the binding activities of the potential compounds. Compounds 7d-Z, 7h-Z, 13c, 13d, and 13f showed relatively excellent antiviral activities with IC50 values ranging from 7.58 to 15.46 nM and their SI values above 1251. These five representative compounds exhibited stronger binding affinity with low equilibrium dissociation constants (KD < 8.25 × 10-7 M) in SPR study. The compound 7h-Z displayed the most potent antiviral activity (IC50 = 7.58 nM) with a relatively high SI value (2496), which could be further studied as a lead compound. The structure-activity relationship indicated that the compounds with lipophilic and spatially larger substituents might possess higher antiviral activity and a much larger safety margin. This study will provide some good guidance for the development of highly active compounds with a novel skeleton against LASV.


Asunto(s)
Arenavirus , Fiebre de Lassa , Humanos , Virus Lassa , Fiebre de Lassa/tratamiento farmacológico , Antivirales/farmacología , Bencimidazoles/farmacología
6.
Pharmaceutics ; 14(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36559140

RESUMEN

Infection with Yersinia pestis (Y. pestis) may cause pneumonic plague, which is inevitably fatal without treatment. Gentamicin (GM), an aminoglycoside antibiotic, is a drug commonly used in the treatment of plague. However, it requires repeated intramuscular or intravenous administration. Pulmonary drug delivery is noninvasive, with the advantages of local targeting and reduced risk of systemic toxicity. In this study, GM powders were prepared using spray-drying technology. The powders displayed good physical and chemical properties and met the requirements for human pulmonary inhalation. The formulation of the powders was optimized using a 32 full factorial design. A formulation of 15% (w/w) of L-leucine was prepared, and the spray-drying process parameters using an inlet temperature of 120°C and a 15% pump rate were determined to produce the best powder. In addition, the optimized GM spray-dried powders were characterized in terms of morphology, crystallinity, powder fluidity, and aerodynamic particle size distribution analysis. In a mouse model of pneumonic plague, we compared the therapeutic effects among three administration routes, including subcutaneous injection, liquid atomization, and dry powder atomization. In conclusion, our data suggest that inhalation therapy with GM spray-dried powders is an effective treatment for pneumonic plague.

7.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163977

RESUMEN

COVID-19 has spread around the world and caused serious public health and social problems. Although several vaccines have been authorized for emergency use, new effective antiviral drugs are still needed. Some repurposed drugs including Chloroquine, Hydroxychloroquine and Remdesivir were immediately used to treat COVID-19 after the pandemic. However, the therapeutic effects of these drugs have not been fully demonstrated in clinical studies. In this paper, we found an antimalarial drug, Naphthoquine, showed good broad-spectrum anti-coronavirus activity. Naphthoquineinhibited HCoV-229E, HCoV-OC43 and SARS-CoV-2 replication in vitro, with IC50 = 2.05 ± 1.44 µM, 5.83 ± 0.74 µM, and 2.01 ± 0.38 µM, respectively. Time-of-addition assay was also performed to explore at which stage Naphthoquine functions during SARS-CoV-2 replication. The results suggested that Naphthoquine may influence virus entry and post-entry replication. Considering the safety of Naphthoquine was even better than that of Chloroquine, we think Naphthoquine has the potential to be used as a broad-spectrum drug for coronavirus infection.


Asunto(s)
1-Naftilamina/análogos & derivados , Aminoquinolinas/farmacología , Antivirales/farmacología , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , 1-Naftilamina/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Humanos , Técnicas In Vitro , Células Vero , Replicación Viral/efectos de los fármacos
8.
Oncol Lett ; 22(3): 657, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34386079

RESUMEN

Melanoma, the most aggressive skin cancer, is mainly treated with BRAF inhibitors or immunotheareapy. However, most patients who initially responded to BRAF inhibitors or immunotheareapy become resistant following relapse. Ferroptosis is a form of regulated cell death characterized by its dependence on iron ions and the accumulation of lipid reactive oxygen species (ROS). Recent studies have demonstrated that ferroptosis is a good method for tumor treatment, and iron homeostasis is closely associated with ferroptosis. Iron regulatory protein (IRP)1 and 2 play important roles in maintaining iron homeostasis, but their functions in ferroptosis have not been investigated. The present study reported that the expression of IRP1 and IRP2 was increased by the ferroptosis inducers erastin and RSL3 in melanoma cells. Depletion of IRP1 significantly suppressed erastin- and RSL3-induced ferroptosis. IRP2 had a weak effect but could enhance the promoting function of IRP1 on ferroptosis. Further, erastin and RSL3 promoted the transition of aconitase 1 to IRP1, which regulated downstream iron metabolism proteins, including transferrin receptor (TFRC), ferroportin (FPN) and ferritin heavy chain 1 (FTH1). Moreover, overexpression of TFRC and knockdown of FPN and FTH1 significantly promoted erastin- and RSL3-induced ferroptosis in IRP1 knockdown melanoma cells. Collectively, the present findings indicate that IRP1 plays an essential role in erastin- and RSL3-induced ferroptosis by regulating iron homeostasis.

9.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32839220

RESUMEN

Combination therapy using drugs with different mechanisms of action is the current state of the art in antimalarial treatment. However, except for artemisinin-based combination therapies, only a few other combinations are now available. Increasing concern regarding the emergence and spread of artemisinin resistance in Plasmodium falciparum has led to a need for the development of new antimalarials. Moreover, the efficacy of current available chemoprophylaxis is compromised by drug resistance and noncompliance due to intolerable adverse effects or complicated dosing regimens. Therefore, new antimalarials that are more effective, safer, and more convenient are also urgently needed for malaria chemoprophylaxis. In this study, we assessed the combination of azithromycin and naphthoquine in animal malaria models. A dose-dependent interaction was observed in Peters' 4-day suppressive test on P. berghei K173-infected mice. Moreover, at inhibition levels of ≥90%, synergistic effects were found for combinations at various ratios. At an optimal dose ratio of 1:1, the combination of azithromycin and naphthoquine acted synergistically even by 4 weeks after the first dose and provided a more effective and sustained prophylaxis than did naphthoquine alone in blood-stage P. berghei K173 and P. cynomolgibastianelli L challenge models. The ability of the combination to delay and slow down resistance development in P. berghei K173 was also shown. These results showed clear evidence for the benefit of the combination therapy with azithromycin and naphthoquine in animal malaria models, providing some insight for further development of this therapy for malaria treatment and prophylaxis.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , 1-Naftilamina/análogos & derivados , Aminoquinolinas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Azitromicina/uso terapéutico , Quimioterapia Combinada , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Ratones
10.
Mol Carcinog ; 58(11): 2149-2160, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31448838

RESUMEN

Autophagy is a self-proteolytic process that degrades intracellular material to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master activator that regulates the transcription of genes involved in autophagy and lysosomal biogenesis. However, the cotranscriptional factors of TFEB are rarely identified. Here, we found that Yin Yang 1 (YY1) regulated autophagy and lysosome biogenesis in melanoma cells. YY1 cooperates with TFEB to regulate autophagy through controlling the transcription of autophagy and lysosome biogenesis related genes. Moreover, suppression of YY1 enhanced the antitumor efficiency of vemurafenib both in vitro and in vivo. Collectively, these studies identify YY1 as a novel cotranscription factor of TFEB in regulating autophagy and lysosomal functions and suggest YY1 could be a therapeutic target in cancer treatment.


Asunto(s)
Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Melanoma/genética , Factor de Transcripción YY1/genética , Animales , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Xenoinjertos , Humanos , Lisosomas/genética , Melanoma/patología , Ratones , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA