Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 14(1): 287-93, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23299688

RESUMEN

Investigations on thermal behavior of drug samples such as acyclovir and zidovudine are interesting not only for obtaining stability information for their processing in pharmaceutical industry but also for predicting their shelf lives and suitable storage conditions. The present work describes thermal behaviors and decomposition kinetics of acyclovir and zidovudine in solid state, studied by some thermal analysis techniques including differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG/DTA). TG analysis revealed that thermal degradation of the acyclovir and zidovudine is started at the temperatures of 400°C and 190°C, respectively. Meanwhile, TG-DTA analysis of acyclovir indicated that this drug melts at about 256°C. However, melting of zidovudine occurred at 142°C, which is 100°C before starting its decomposition (242°C). Different heating rates were applied to study the DSC behavior of drug samples in order to compute their thermokinetic and thermodynamic parameters by non-isothermal kinetic methods. Thermokinetic data showed that both drugs at the room temperature have slow degradation reaction rates and long shelf lives. However, acyclovir is considerably more thermally stable than zidovudine.


Asunto(s)
Aciclovir/química , Antivirales/química , Zidovudina/química , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Cinética , Termogravimetría
2.
Talanta ; 81(1-2): 109-15, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20188895

RESUMEN

Three different ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF(4)]; 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMIM][OTf]; and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide [bmpyrr][NTf(2)] were studied as electrolytes in the electroanalytical quantification of 2-furaldehyde using square wave and differential pulse voltammetries. On applying a cathodic scan, a well-defined 2-electron wave was observed corresponding to the reduction of 2-furaldehyde to furfuryl alcohol. The electrochemical stability of the ionic liquids as electrolytes for analytical aspects and electrokinetic studies was investigated using a glassy carbon electrode (GCE). The measurements were carried out in a designed double-wall three-electrode cell, using two platinum wires as the quasi-reference and counter electrodes. Differential pulse voltammetry was found to be the most sensitive method at GCE. The detection limits of 1.4, 19.0 and 2.5 microg g(-1) were obtained for the determination of 2-furaldehyde in [EMIM][BF(4)], [BMIM][OTf] and [BMPyrr][NTf(2)], respectively. At a concentration of 50 microg g(-1), the maximum relative standard deviation (n=3) was 4.9%. The effect of water content of the ionic liquids on their potential windows and waveforms was also investigated. The proposed method was successfully applied to the determination of 2-furaldehyde in real samples, especially in oil matrices.


Asunto(s)
Electrólitos/química , Furaldehído/análisis , Furaldehído/química , Residuos Industriales/análisis , Líquidos Iónicos/química , Aceites/química , Temperatura , Electroquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA