Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(2): 108849, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303730

RESUMEN

Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.

2.
Pharmaceutics ; 15(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111695

RESUMEN

The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.

3.
Cells ; 10(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685774

RESUMEN

The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.


Asunto(s)
Envejecimiento/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Comunicación Celular , Células Ependimogliales/citología , Neuronas/citología , Regeneración/fisiología , Telencéfalo/fisiopatología , Proteínas de Pez Cebra/metabolismo , Animales , Ciclo Celular/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Receptores Notch/metabolismo , Transducción de Señal , Telencéfalo/lesiones , Telencéfalo/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Stem Cells ; 38(7): 875-889, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246536

RESUMEN

In the telencephalon of adult zebrafish, the inhibitor of DNA binding 1 (id1) gene is expressed in radial glial cells (RGCs), behaving as neural stem cells (NSCs), during constitutive and regenerative neurogenesis. Id1 controls the balance between resting and proliferating states of RGCs by promoting quiescence. Here, we identified a phylogenetically conserved cis-regulatory module (CRM) mediating the specific expression of id1 in RGCs. Systematic deletion mapping and mutation of conserved transcription factor binding sites in stable transgenic zebrafish lines reveal that this CRM operates via conserved smad1/5 and 4 binding motifs under both homeostatic and regenerative conditions. Transcriptome analysis of injured and uninjured telencephala as well as pharmacological inhibition experiments identify a crucial role of bone morphogenetic protein (BMP) signaling for the function of the CRM. Our data highlight that BMP signals control id1 expression and thus NSC proliferation during constitutive and induced neurogenesis.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Encéfalo/metabolismo , Proteína 1 Inhibidora de la Diferenciación , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Transducción de Señal , Pez Cebra/genética , Pez Cebra/metabolismo
5.
Dev Genes Evol ; 230(1): 37, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989242

RESUMEN

In the originally published article, the first names and family names of the authors were interchanged, hence not correct. The correct presentation of names is presented above.

6.
Dev Genes Evol ; 230(1): 27-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838648

RESUMEN

Otospiralin (OTOSP) is a small protein of unknown function, expressed in fibrocytes of the inner ear and required for normal cochlear auditory function. Despite its conservation from fish to mammals, expression of otospiralin was only investigated in mammals. Here, we report for the first time the expression profile of OTOS orthologous genes in zebrafish (Danio rerio): otospiralin and si:ch73-23l24.1 (designated otospiralin-like). In situ hybridization analyses in zebrafish embryos showed a specific expression of otospiralin-like in notochord (from 14 to 48 hpf) and similar expression patterns for otospiralin and otospiralin-like in gut (from 72 to 120 hpf), swim bladder (from 96 to 120 hpf) and inner ear (at 120 hpf). Morpholino knockdown of otospiralin and otospiralin-like showed no strong change of the body structure of the embryos at 5 dpf and the inner ear was normally formed. Nevertheless, knockdown embryos showed a reduced number of kinocilia in the lateral crista, indicating that these genes play an important role in kinocilium formation. RT-qPCR revealed that otospiralin is highly expressed in adult zebrafish inner ear comparing to the others analyzed tissues as previously shown for mice. Interestingly, otospiralin-like was not detected in the inner ear which suggests that otospiralin have a more important function in hearing than otospiralin-like. Phylogenetic analysis of otospiralin proteins in vertebrates indicated the presence of two subgroups and supported the functional divergence observed in zebrafish for otospiralin and otospiralin-like genes. This study offers the first insight into the expression of otospiralin and otospiralin-like in zebrafish. Expression data point to an important role for otospiralin in zebrafish hearing and a specific role for otospiralin-like in notochord vacuolization.


Asunto(s)
Duplicación de Gen , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Morfolinos , Filogenia , Transcriptoma , Vertebrados/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
7.
Sci Rep ; 7(1): 13583, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051533

RESUMEN

Many areas of biological research demand the combined use of different imaging modalities to cover a wide range of magnifications and measurements or to place fluorescent patterns into an ultrastructural context. A technically difficult problem is the efficient specimen transfer between different imaging modalities without losing the coordinates of the regions-of-interest (ROI). Here, we report a new and highly sensitive integrated system that combines a custom designed microscope with an ultramicrotome for in-resin-fluorescence detection in blocks, ribbons and sections on EM-grids. Although operating with long-distance lenses, this system achieves a very high light sensitivity. Our instrumental set-up and operating workflow are designed to investigate rare events in large tissue volumes. Applications range from studies of individual immune, stem and cancer cells to the investigation of non-uniform subcellular processes. As a use case, we present the ultrastructure of a single membrane repair patch on a muscle fiber in intact muscle in a whole animal context.

8.
Nat Commun ; 7: 12875, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641898

RESUMEN

Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions.


Asunto(s)
Disferlina/metabolismo , Macrófagos/fisiología , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Cinturas/genética , Fosfatidilserinas/metabolismo , Sarcolema/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Arginina/genética , Disferlina/genética , Embrión no Mamífero , Células HeLa , Humanos , Proteínas de la Membrana/genética , Pez Cebra , Proteínas de Pez Cebra/genética
9.
Gene Expr Patterns ; 19(1-2): 1-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107416

RESUMEN

Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.


Asunto(s)
Proteínas Inhibidoras de la Diferenciación/genética , Células-Madre Neurales/fisiología , Neurogénesis/genética , Neuronas/fisiología , Proteínas Represoras/genética , Pez Cebra/genética , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación/biosíntesis , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/biosíntesis
10.
PLoS One ; 10(2): e0117645, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692557

RESUMEN

The cornea is a central component of the camera eye of vertebrates and even slight corneal disturbances severely affect vision. The transcription factor PAX6 is required for normal eye development, namely the proper separation of the lens from the developing cornea and the formation of the iris and anterior chamber. Human PAX6 mutations are associated with severe ocular disorders such as aniridia, Peters anomaly and chronic limbal stem cell insufficiency. To develop the zebrafish as a model for corneal disease, we first performed transcriptome and in situ expression analysis to identify marker genes to characterise the cornea in normal and pathological conditions. We show that, at 7 days post fertilisation (dpf), the zebrafish cornea expresses the majority of marker genes (67/84 tested genes) found also expressed in the cornea of juvenile and adult stages. We also characterised homozygous pax6b mutants. Mutant embryos have a thick cornea, iris hypoplasia, a shallow anterior chamber and a small lens. Ultrastructure analysis revealed a disrupted corneal endothelium. pax6b mutants show loss of corneal epithelial gene expression including regulatory genes (sox3, tfap2a, foxc1a and pitx2). In contrast, several genes (pitx2, ctnnb2, dcn and fabp7a) were ectopically expressed in the malformed corneal endothelium. Lack of pax6b function leads to severe disturbance of the corneal gene regulatory programme.


Asunto(s)
Cámara Anterior/crecimiento & desarrollo , Cámara Anterior/metabolismo , Proteínas del Ojo/genética , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Cámara Anterior/patología , Endotelio Corneal/crecimiento & desarrollo , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Retina/patología
11.
J Vis Exp ; (90): e51753, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25146302

RESUMEN

Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.


Asunto(s)
Regeneración Nerviosa/fisiología , Neurogénesis/fisiología , Telencéfalo/lesiones , Telencéfalo/fisiopatología , Animales , Inmunohistoquímica , Hibridación in Situ , Cicatrización de Heridas/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...