Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cornea ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416674

RESUMEN

PURPOSE: The purpose of this study was to investigate the effects of artificial tears (AT) on the sublayers of the tear film assessed by a novel tear film imaging (TFI) device. METHODS: The mucoaqueous layer thickness (MALT) and lipid layer thickness (LLT) of 198 images from 11 healthy participants, 9 of whom had meibomian gland disease, were prospectively measured before and after exposure to 3 different AT preparations (Refresh Plus; Retaine [RTA]; Systane Complete PF [SYS]), using a novel nanometer resolution TFI device (AdOM, Israel). Participants were assessed at baseline and at 1, 5, 10, 30, and 60 minutes after instilling 1 drop of AT during 3 sessions on separate days. Repeated-measures analysis of variances were used for comparisons with P < 0.05 considered significant. RESULTS: For all ATs, the mean MALT was greatest 1 minute after drop instillation, with an increase of 67%, 55%, and 11% above the baseline for SYS, Refresh Plus, and RTA, respectively. The SYS formulation demonstrated the highest percentage increases in mean MALT and LLT at most postdrop time points. The MALT differences were significantly higher in the SYS than in the RTA (P = 0.014). After 60 minutes, no AT group demonstrated statistically significant changes in MALT or LLT compared with baseline. CONCLUSIONS: We report, for the first time, the effects of AT on MALT and LLT using a high-resolution TFI. A substantial acute mean MALT increase occurs 1 minute after AT instillation with all agents tested, but there were clear differences in response and durability, suggesting the benefits of choosing specific AT according to the needs of each patient.

2.
Nano Lett ; 23(23): 10758-10764, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38007708

RESUMEN

The mid-infrared (MIR) spectral region attracts attention for accurate chemical analysis using photonic devices. Few-layer graphene (FLG) polytypes are promising platforms, due to their broad absorption in this range and gate-tunable optical properties. Among these polytypes, the noncentrosymmetric ABCB/ACAB structure is particularly interesting, due to its intrinsic bandgap (8.8 meV) and internal polarization. In this study, we utilize scattering-scanning near-field microscopy to measure the optical response of all three tetralayer graphene polytypes in the 8.5-11.5 µm range. We employ a finite dipole model to compare these results to the calculated optical conductivity for each polytype obtained from a tight-binding model. Our findings reveal a significant discrepancy in the MIR optical conductivity response of graphene between the different polytypes than what the tight-binding model suggests. This observation implies an increased potential for utilizing the distinct tetralayer polytypes in photonic devices operating within the MIR range for chemical sensing and infrared imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...