Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Virol ; 166(6): 1615-1622, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33774730

RESUMEN

We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.


Asunto(s)
Enfermedades de las Plantas/virología , Rhabdoviridae/aislamiento & purificación , Solanum/virología , Brasil , Genoma Viral , Filogenia , Hojas de la Planta/virología , Virus de Plantas , Rhabdoviridae/genética
3.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
4.
Virus Res ; 281: 197942, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201209

RESUMEN

Plant rhabdoviruses are recognized by their large bacilliform particles and for being able to replicate in both their plant hosts and arthropod vectors. This review highlights selected, better studied examples of plant rhabdoviruses, their genetic diversity, epidemiology and interactions with plant hosts and arthropod vectors: Alfalfa dwarf virus is classified as a cytorhabdovirus, but its multifunctional phosphoprotein is localized to the plant cell nucleus. Lettuce necrotic yellows virus subtypes may differentially interact with their aphid vectors leading to changes in virus population diversity. Interactions of rhabdoviruses that infect rice, maize and other grains are tightly associated with their specific leafhopper and planthopper vectors. Future outbreaks of vector-borne nucleorhabdoviruses may be predicted based on a world distribution map of the insect vectors. The epidemiology of coffee ringspot virus and its Brevipalpus mite vector is illustrated highlighting the symptomatology and biology of a dichorhavirus and potential impacts of climate change on its epidemiology.


Asunto(s)
Productos Agrícolas/virología , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Virus de Plantas , Rhabdoviridae , Animales , Interacciones Microbiota-Huesped , Virus de Plantas/genética , Virus de Plantas/fisiología , Rhabdoviridae/genética , Rhabdoviridae/fisiología
5.
Pathogens ; 9(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183134

RESUMEN

Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1-3) of an Australian AMV isolate from alfalfa.

6.
Virus Genes ; 54(4): 612-615, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29730762

RESUMEN

In 2010, a novel cytorhabdovirus named alfalfa dwarf virus (ADV) was detected for the first time in lucerne crops in Argentina showing dwarfism, in mixed infections with several other viruses. ADV appears to be endemic to Argentina and has not been reported elsewhere. In this study, we have investigated the genetic variability of ADV based on the complete nucleoprotein (N) gene of 13 isolates from different lucerne-growing regions in Argentina. Phylogenetic and sequence identity analyses showed that all ADV isolates are closely related and have not diverged more than 1% in the N gene despite geographical separation. These data provide further evidence that ADV is new to science and emerged and spread very recently. A total of 43 single-nucleotide polymorphisms were identified between the ADV isolates studied. Analysis of N gene ORF sequence revealed a mutational bias, with more transitions than transversions. In all cases, the ratio of non-synonymous/synonymous nucleotide changes was < 1, indicating that ADV N gene is under predominantly purifying selection.


Asunto(s)
Variación Genética , Medicago sativa/virología , Enfermedades de las Plantas/virología , Rhabdoviridae/clasificación , Rhabdoviridae/genética , Argentina , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Polimorfismo de Nucleótido Simple , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...