Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 167(2): 156-65, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23026555

RESUMEN

Metagenomics aims at exploring microbial communities concerning their composition and functioning. Application of high-throughput sequencing technologies for the analysis of environmental DNA-preparations can generate large sets of metagenome sequence data which have to be analyzed by means of bioinformatics tools to unveil the taxonomic composition of the analyzed community as well as the repertoire of genes and gene functions. A bioinformatics software platform is required that allows the automated taxonomic and functional analysis and interpretation of metagenome datasets without manual effort. To address current demands in metagenome data analyses, the novel platform MetaSAMS was developed. MetaSAMS automatically accomplishes the tasks necessary for analyzing the composition and functional repertoire of a given microbial community from metagenome sequence data by implementing two software pipelines: (i) the first pipeline consists of three different classifiers performing the taxonomic profiling of metagenome sequences and (ii) the second functional pipeline accomplishes region predictions on assembled contigs and assigns functional information to predicted coding sequences. Moreover, MetaSAMS provides tools for statistical and comparative analyses based on the taxonomic and functional annotations. The capabilities of MetaSAMS are demonstrated for two metagenome datasets obtained from a biogas-producing microbial community of a production-scale biogas plant. The MetaSAMS web interface is available at https://metasams.cebitec.uni-bielefeld.de.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Metagenoma/genética , Secuencia de Bases , Biocombustibles , Variación Genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia , Programas Informáticos
2.
Gene ; 498(2): 203-11, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22548232

RESUMEN

New molecular resources regarding the so-called "non-standard models" in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S. officinalis, yielding 19,780 non-redundant sequences (NRS). Around 75% of these sequences have no homologs in existing available databases. This set is the first developmental ESTs library in cephalopods. By exploring these NRS for tubulin, a generic protein family, and reflectin, a cephalopod specific protein family,we point out for both families a striking molecular diversity in S. officinalis.


Asunto(s)
Etiquetas de Secuencia Expresada , Sepia/genética , Tubulina (Proteína)/genética , Actinas/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/fisiología , Femenino , Biblioteca de Genes , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Sepia/embriología
3.
J Biotechnol ; 156(3): 227-35, 2011 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21945585

RESUMEN

The pyrosequencing technology from 454 Life Sciences and a novel assembly approach for cDNA sequences with the Newbler Assembler were used to achieve a major step forward to unravel the transcriptome of Chinese hamster ovary (CHO) cells. Normalized cDNA libraries originating from several cell lines and diverse culture conditions were sequenced and the resulting 1.84 million reads were assembled into 32,801 contiguous sequences, 29,184 isotigs, and 24,576 isogroups. A taxonomic classification of the isotigs showed that more than 70% of the assembled data is most similar to the transcriptome of Mus musculus, with most of the remaining isotigs being homologous to DNA sequences from Rattus norvegicus. Mapping of the CHO cell line contigs to the mouse transcriptome demonstrated that 9124 mouse transcripts, representing 6701 genes, are covered by more than 95% of their sequence length. Metabolic pathways of the central carbohydrate metabolism and biosynthesis routes of sugars used for protein N-glycosylation were reconstructed from the transcriptome data. All relevant genes representing major steps in the N-glycosylation pathway of CHO cells were detected. The present manuscript represents a data set of assembled and annotated genes for CHO cells that can now be used for a detailed analysis of the molecular functioning of CHO cell lines.


Asunto(s)
Células CHO/metabolismo , Análisis de Secuencia de ADN/métodos , Transcriptoma , Animales , Secuencia de Bases , Cricetinae , Biblioteca de Genes , Ratones , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Ratas
4.
Biofouling ; 27(4): 367-74, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21526438

RESUMEN

In order to improve the genetic characterisation of the barnacle Balanus amphitrite, normalised EST libraries for the developmental stages, viz. nauplius (a mix of instars I and II), cyprid and adult, were generated. The libraries were sequenced independently using 454 technologies and 575,666 reads were generated. For adults, 4843 unique isotigs were estimated and 6754 and 7506 in the cyprid and naupliar stage, respectively. It was found that some of the previously proposed cyprid-specific bcs genes were also expressed during the naupliar and adult stage. Furthermore, as lectins have been hypothesised to influence settlement cue recognition in barnacles, the database was searched for lectin-like isotigs. Two proteins, uniquely expressed in either the cyprid or the adult stage, matched a mannose receptor, and their nucleotide sequences were 33% and 31% identical to a lectin (BRA-3) isolated from Megabalanus rosa. Further characterisation of these genes may suggest their involvement in settlement.


Asunto(s)
Incrustaciones Biológicas , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Thoracica/genética , Animales , Conducta Animal , Bases de Datos Genéticas , Estadios del Ciclo de Vida , Análisis de Secuencia de ADN , Thoracica/crecimiento & desarrollo , Interfaz Usuario-Computador
5.
J Biotechnol ; 155(1): 20-33, 2011 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21396969

RESUMEN

Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.


Asunto(s)
Cromosomas Bacterianos , Genoma Bacteriano , Plásmidos/genética , Sinorhizobium meliloti/genética , Bacteriófagos/genética , Etilenos/metabolismo , Evolución Molecular , Genómica , Medicago sativa/microbiología , Fijación del Nitrógeno , Óxido Nitroso/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Sinorhizobium meliloti/aislamiento & purificación , Sinorhizobium meliloti/metabolismo , Simbiosis
6.
PLoS One ; 6(1): e14519, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21297863

RESUMEN

Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.


Asunto(s)
Bacterias Anaerobias/aislamiento & purificación , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Fermentación/genética , Metagenómica/métodos , Análisis de Secuencia de ARN/métodos , Clasificación , Metano/biosíntesis , Filogenia , ARN Ribosómico 16S/genética
7.
BMC Genomics ; 11: 329, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20504312

RESUMEN

BACKGROUND: The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 --> 3)-beta-linked glucose with a (1 --> 6)-beta-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. RESULTS: Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding approximately 350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified approximately 800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. CONCLUSIONS: The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and oxalate synthesis and to identify important genes putatively involved in determining scleroglucan yields. Moreover, our data establish the first sequence database for S. rolfsii, which allows research into other biological processes of S. rolfsii, such as host-pathogen interaction.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilación de la Expresión Génica/métodos , Glucanos/biosíntesis , Análisis de Secuencia de ADN/métodos , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
BMC Genomics ; 11: 91, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20137072

RESUMEN

BACKGROUND: Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. RESULTS: Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. CONCLUSIONS: The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment. The location of the corresponding genes on plasmid pET44827 explains why black-pigmented (formerly C. nigricans) and non-pigmented C. aurimucosum strains were isolated from clinical specimens.


Asunto(s)
Corynebacterium/genética , Genoma Bacteriano , Vagina/microbiología , Aborto Espontáneo , Adulto , Biología Computacional , Corynebacterium/crecimiento & desarrollo , Infecciones por Corynebacterium/microbiología , ADN Bacteriano/genética , Femenino , Genes Bacterianos , Humanos , Familia de Multigenes , Embarazo , Análisis de Secuencia de ADN
9.
BMC Syst Biol ; 3: 82, 2009 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-19698148

RESUMEN

BACKGROUND: The rapid progress of post-genomic analyses, such as transcriptomics, proteomics, and metabolomics has resulted in the generation of large amounts of quantitative data covering and connecting the complete cascade from genotype to phenotype for individual organisms. Various benefits can be achieved when these "Omics" data are integrated, such as the identification of unknown gene functions or the elucidation of regulatory networks of whole organisms. In order to be able to obtain deeper insights in the generated datasets, it is of utmost importance to present the data to the researcher in an intuitive, integrated, and knowledge-based environment. Therefore, various visualization paradigms have been established during the last years. The visualization of "Omics" data using metabolic pathway maps is intuitive and has been applied in various software tools. It has become obvious that the application of web-based and user driven software tools has great potential and benefits from the use of open and standardized formats for the description of pathways. RESULTS: In order to combine datasets from heterogeneous "Omics" sources, we present the web-based ProMeTra system that visualizes and combines datasets from transcriptomics, proteomics, and metabolomics on user defined metabolic pathway maps. Therefore, structured exchange of data with our "Omics" applications Emma 2, Qupe and MeltDB is employed. Enriched SVG images or animations are generated and can be obtained via the user friendly web interface. To demonstrate the functionality of ProMeTra, we use quantitative data obtained during a fermentation experiment of the L-lysine producing strain Corynebacterium glutamicum DM1730. During fermentation, oxygen supply was switched off in order to perturb the system and observe its reaction. At six different time points, transcript abundances, intracellular metabolite pools, as well as extracellular glucose, lactate, and L-lysine levels were determined. CONCLUSION: The interpretation and visualization of the results of this complex experiment was facilitated by the ProMeTra software. Both transcriptome and metabolome data were visualized on a metabolic pathway map. Visual inspection of the combined data confirmed existing knowledge but also delivered novel correlations that are of potential biotechnological importance.


Asunto(s)
Mapeo Cromosómico/métodos , Gráficos por Computador , Bases de Datos de Proteínas , Metaboloma/genética , Proteoma/metabolismo , Programas Informáticos , Interfaz Usuario-Computador , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética
10.
J Biotechnol ; 142(1): 38-49, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19480946

RESUMEN

The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.


Asunto(s)
Archaea/genética , Bacterias/genética , ADN Ribosómico/genética , Genoma Arqueal , Genoma Bacteriano , Metano/metabolismo , Filogenia , Archaea/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Biomasa , Reactores Biológicos , Biblioteca de Genes , Genes Arqueales , Genes Bacterianos , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Oxidorreductasas/genética , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
BMC Mol Biol ; 10: 62, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19552808

RESUMEN

BACKGROUND: Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR) data obtained from different developmental stages of this animal. RESULTS: We generated a cDNA library containing expressed sequence tags (ESTs) from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets) were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. CONCLUSION: The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.


Asunto(s)
Biblioteca de Genes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Selección Genética , Thoracica/genética , Envejecimiento/fisiología , Animales , Etiquetas de Secuencia Expresada , Expresión Génica , Datos de Secuencia Molecular
12.
J Biotechnol ; 140(1-2): 3-12, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19297685

RESUMEN

DNA sequencing plays a more and more important role in various fields of genetics. This includes sequencing of whole genomes, libraries of cDNA clones and probes of metagenome communities. The applied sequencing technologies evolve permanently. With the emergence of ultrafast sequencing technologies, a new era of DNA sequencing has recently started. Concurrently, the needs for adapted bioinformatics tools arise. Since the ability to process current datasets efficiently is essential for modern genetics, a modular bioinformatics platform providing extensive sequence analysis methods, is designated to achieve well the constantly growing requirements. The Sequence Analysis and Management System (SAMS) is a bioinformatics software platform with a database backend designed to support the computational analysis of (1) whole genome shotgun (WGS) bacterial genome sequencing, (2) cDNA sequencing by reading expressed sequence tags (ESTs) as well as (3) sequence data obtained by ultrafast sequencing. It provides extensive bioinformatics analysis of sequenced single reads, sequencing libraries and fragments of arbitrary DNA sequences such as assembled contigs of metagenome reads for instance. The system has been implemented to cope with several thousands of sequences, efficiently processing them and storing the results for further analysis. With the project setup, SAMS automatically recognizes the data type.


Asunto(s)
Genoma Bacteriano , Gestión de la Información/métodos , Almacenamiento y Recuperación de la Información/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Análisis por Conglomerados , Biología Computacional , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Interfaz Usuario-Computador
13.
BMC Plant Biol ; 9: 19, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19210766

RESUMEN

BACKGROUND: Databases for either sequence, annotation, or microarray experiments data are extremely beneficial to the research community, as they centrally gather information from experiments performed by different scientists. However, data from different sources develop their full capacities only when combined. The idea of a data warehouse directly adresses this problem and solves it by integrating all required data into one single database - hence there are already many data warehouses available to genetics. For the model legume Medicago truncatula, there is currently no such single data warehouse that integrates all freely available gene sequences, the corresponding gene expression data, and annotation information. Thus, we created the data warehouse TRUNCATULIX, an integrative database of Medicago truncatula sequence and expression data. RESULTS: The TRUNCATULIX data warehouse integrates five public databases for gene sequences, and gene annotations, as well as a database for microarray expression data covering raw data, normalized datasets, and complete expression profiling experiments. It can be accessed via an AJAX-based web interface using a standard web browser. For the first time, users can now quickly search for specific genes and gene expression data in a huge database based on high-quality annotations. The results can be exported as Excel, HTML, or as csv files for further usage. CONCLUSION: The integration of sequence, annotation, and gene expression data from several Medicago truncatula databases in TRUNCATULIX provides the legume community with access to data and data mining capability not previously available. TRUNCATULIX is freely available at http://www.cebitec.uni-bielefeld.de/truncatulix/.


Asunto(s)
Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Medicago truncatula/genética , Biología Computacional/métodos , Interfaz Usuario-Computador
14.
J Biotechnol ; 136(1-2): 77-90, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18597880

RESUMEN

Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production.


Asunto(s)
Archaea/fisiología , Reactores Biológicos/microbiología , Mapeo Cromosómico/métodos , Genoma Arqueal/genética , Metano/metabolismo , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Biotecnología/métodos , Datos de Secuencia Molecular
15.
J Biotechnol ; 136(1-2): 54-64, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18586057

RESUMEN

Wastewater treatment plants (WWTPs) are a reservoir for bacteria harbouring antibiotic resistance plasmids. To get a comprehensive overview on the plasmid metagenome of WWTP bacteria showing reduced susceptibility to certain antimicrobial drugs an ultrafast sequencing approach applying the 454-technology was carried out. One run on the GS 20 System yielded 346,427 reads with an average read length of 104 bases resulting in a total of 36,071,493 bases sequence data. The obtained plasmid metagenome was analysed and functionally annotated by means of the Sequence Analysis and Management System (SAMS) software package. Known plasmid genes could be identified within the WWTP plasmid metagenome data set by BLAST searches using the NCBI Plasmid Database. Most abundant hits represent genes involved in plasmid replication, stability, mobility and transposition. Mapping of plasmid metagenome reads to completely sequenced plasmids revealed that many sequences could be assigned to the cryptic pAsa plasmids previously identified in Aeromonas salmonicida subsp. salmonicida and to the accessory modules of the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas punctata. Matches of sequence reads to antibiotic resistance genes indicate that plasmids from WWTP bacteria encode resistances to all major classes of antimicrobial drugs. Plasmid metagenome sequence reads could be assembled into 605 contigs with a minimum length of 500 bases. Contigs predominantly encode plasmid survival functions and transposition enzymes.


Asunto(s)
Antiinfecciosos/administración & dosificación , Bacterias Aerobias/genética , Mapeo Cromosómico/métodos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Microbiología del Agua , Bacterias Aerobias/efectos de los fármacos , Secuencia de Bases , Biotecnología/métodos , Residuos Industriales , Datos de Secuencia Molecular
16.
J Biotechnol ; 136(1-2): 31-7, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18562031

RESUMEN

Genomic variation between the Sinorhizobium meliloti model strain Rm1021 and the field isolate SM11 was assessed by using the genome-wide S. meliloti Rm1021 Sm6k-oligonucleotide microarray in a comparative genomic hybridisation experiment. Several gene clusters present in the Rm1021 genome are missing in the SM11 genome. In detail, three missing gene clusters were identified for the chromosome, five for megaplasmid pSymA and two for megaplasmid pSymB. To confirm these hybridisation results, the draft genome sequence of the S. meliloti field isolate SM11 was established by 454-pyrosequencing. Three sequencing runs on the ultrafast Genome Sequencer 20 System yielded 112.5 million bases. These could be assembled into 905 larger contigs resulting in a nearly 15-fold coverage of the 7.1Mb SM11 genome. The missing gene regions identified by comparative genomic hybridisation could be confirmed by the results of the 454-sequencing project. An in-depth analysis of these gene regions resulted in the following findings: (i) a complete type I restriction/modification system encoded by a composite transposon is absent in the chromosome of strain SM11. (ii) Most of the Rm1021 denitrification genes and the complete siderophore biosynthesis operon were found to be missing on SM11 megaplasmid pSymA. (iii) S. meliloti SM11 megaplasmid pSymB lacks a complete cell surface carbohydrate synthesis gene cluster. (iv) Several genes that are absent in the SM11 genome could be assigned to insertion sequences and transposons.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano/genética , Familia de Multigenes/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Sinorhizobium meliloti/clasificación , Sinorhizobium meliloti/genética , Secuencia de Bases , Secuencia Conservada/genética , Hibridación in Situ/métodos , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Especificidad de la Especie
17.
J Biotechnol ; 136(1-2): 11-21, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18367281

RESUMEN

Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Mapeo Cromosómico/métodos , Corynebacterium/genética , Genoma Bacteriano/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Datos de Secuencia Molecular
18.
J Biotechnol ; 134(1-2): 33-45, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18304669

RESUMEN

The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.


Asunto(s)
Genoma Bacteriano , Polisacáridos Bacterianos/biosíntesis , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
J Bacteriol ; 190(6): 2138-49, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192381

RESUMEN

Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.


Asunto(s)
Actinobacteria/genética , ADN Bacteriano/genética , Genoma Bacteriano , Solanum lycopersicum/microbiología , Actinobacteria/patogenicidad , Composición de Base/genética , ADN Bacteriano/química , Electroforesis en Gel de Campo Pulsado , Genes Bacterianos/genética , Islas Genómicas/genética , Modelos Genéticos , Datos de Secuencia Molecular , Operón/genética , Plásmidos/genética , Análisis de Secuencia de ADN , Serina Endopeptidasas/genética
20.
BMC Syst Biol ; 1: 55, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-18034885

RESUMEN

BACKGROUND: The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. RESULTS: To facilitate the analysis of gene-regulatory networks, we have developed CoryneCenter, a web-based resource for the systematic integration and analysis of genome, transcriptome, and gene regulatory information for prokaryotes, especially corynebacteria. For this purpose, we extended and combined the following systems into a common platform: (1) GenDB, an open source genome annotation system, (2) EMMA, a MAGE compliant application for high-throughput transcriptome data storage and analysis, and (3) CoryneRegNet, an ontology-based data warehouse designed to facilitate the reconstruction and analysis of gene regulatory interactions. We demonstrate the potential of CoryneCenter by means of an application example. Using microarray hybridization data, we compare the gene expression of Corynebacterium glutamicum under acetate and glucose feeding conditions: Known regulatory networks are confirmed, but moreover CoryneCenter points out additional regulatory interactions. CONCLUSION: CoryneCenter provides more than the sum of its parts. Its novel analysis and visualization features significantly simplify the process of obtaining new biological insights into complex regulatory systems. Although the platform currently focusses on corynebacteria, the integrated tools are by no means restricted to these species, and the presented approach offers a general strategy for the analysis and verification of gene regulatory networks. CoryneCenter provides freely accessible projects with the underlying genome annotation, gene expression, and gene regulation data. The system is publicly available at http://www.CoryneCenter.de.


Asunto(s)
Corynebacterium/genética , Genoma Bacteriano , ARN Mensajero/genética , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...