Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402235, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965704

RESUMEN

Exsolution of metal nanoparticles (NPs) on perovskite oxides has been demonstrated as a reliable strategy for producing catalyst-support systems. Conventional exsolution requires high temperatures for long periods of time, limiting the selection of support materials. Plasma direct exsolution is reported at room temperature and atmospheric pressure of Ni NPs from a model A-site deficient perovskite oxide (La0.43Ca0.37Ni0.06Ti0.94O2.955). Plasma exsolution is carried out within minutes (up to 15 min) using a dielectric barrier discharge configuration both with He-only gas as well as with He/H2 gas mixtures, yielding small NPs (<30 nm diameter). To prove the practical utility of exsolved NPs, various experiments aimed at assessing their catalytic performance for methanation from synthesis gas, CO, and CH4 oxidation are carried out. Low-temperature and atmospheric pressure plasma exsolution are successfully demonstrated and suggest that this approach could contribute to the practical deployment of exsolution-based stable catalyst systems.

2.
Angew Chem Int Ed Engl ; 59(6): 2510-2519, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31804017

RESUMEN

Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface. By employing operando techniques, we show that in the emergent nanostructure, the endogenous nanoparticles and the perovskite lattice become reciprocally strained and seamlessly connected, enabling enhanced oxygen exchange. Additionally, even deeply embedded nanoparticles can reversibly exchange oxygen with a methane stream, driving its redox conversion to syngas with remarkable selectivity and long term cyclability while surface particles are present. These results not only exemplify the means to create extensive, self-strained nanoarchitectures with enhanced oxygen transport and storage capabilities, but also demonstrate that deeply submerged, redox-active nanoparticles could be entirely accessible to reaction environments, driving redox transformations and thus offering intriguing new alternatives to design materials underpinning several energy conversion technologies.

3.
Water Res ; 126: 111-121, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934645

RESUMEN

Graphene was successfully employed as a catalyst for the activation of sodium persulfate, towards the effective degradation of propylparaben, an emerging micro-pollutant, representative of the parabens family. A novel process is proposed which utilizes a commercial graphene nano-powder as the catalyst and sodium persulfate as the oxidizing agent. It was found that over 95% of micro-pollutant degradation occurs within 15 min of reaction time. The effects of catalyst loading (75 mg/L to 1 g/L), sodium persulfate (SPS) concentration (10 mg/L to 1 g/L), initial solution pH (3-9) and initial paraben concentration (0.5 mg/L to 5 mg/L) were examined. Experiments were carried out in different aqueous conditions, including ultrapure water, bottled water and wastewater in order to investigate their effect on the degradation rate. The efficiency of the process was lower at complex water matrices signifying the role of organic matter as scavenger of the oxidant species. The role of radical scavengers was also investigated through the addition of methanol and tert-butanol in several concentrations, which was found to be important only in relatively high values. An experiment in which propylparaben was substituted by methylparaben was conducted and similar results were obtained. The consumption of SPS was found to be high in all pH conditions tested, surpassing 80% in near neutral environment. However, the results indicate that the sulfate radicals formed react with water in alkaline conditions, which are the optimal for the reaction, producing hydroxyl radicals which appear to be the dominant species leading to the rapid degradation of propylparaben. To the best of our knowledge, this is the first time pristine graphene has been implemented as an activator of sodium persulfate for the effective oxidation of micro-pollutants.


Asunto(s)
Grafito/química , Parabenos/química , Compuestos de Sodio/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Catálisis , Agua Potable , Radical Hidroxilo/química , Oxidación-Reducción , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...