Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(6): 1117-1124.e4, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36764300

RESUMEN

Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.


Asunto(s)
Ecosistema , Quercus , Humanos , Semillas , Frutas , Reproducción , Árboles
2.
New Phytol ; 225(3): 1181-1192, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31569273

RESUMEN

Many perennial plants display masting, that is, fruiting with strong interannual variations, irregular and synchronized between trees within the population. Here, we tested the hypothesis that the early flower phenology in temperate oak species promotes stochasticity into their fruiting dynamics, which could play a major role in tree reproductive success. From a large field monitoring network, we compared the pollen phenology between temperate and Mediterranean oak species. Then, focusing on temperate oak species, we explored the influence of the weather around the time of budburst and flowering on seed production, and simulated with a mechanistic model the consequences that an evolutionary shifting of flower phenology would have on fruiting dynamics. Temperate oak species release pollen earlier in the season than do Mediterranean oak species. Such early flowering in temperate oak species results in pollen often being released during unfavorable weather conditions and frequently results in reproductive failure. If pollen release were delayed as a result of natural selection, fruiting dynamics would exhibit much reduced stochastic variation. We propose that early flower phenology might be adaptive by making mast-seeding years rare and unpredictable, which would greatly help in controlling the dynamics of seed consumers.


Asunto(s)
Flores/fisiología , Frutas/fisiología , Quercus/fisiología , Evolución Biológica , Bosques , Región Mediterránea , Polen/fisiología , Temperatura
3.
Ecol Lett ; 22(1): 98-107, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30324722

RESUMEN

In many perennial wind-pollinated plants, the dynamics of seed production is commonly known to be highly fluctuating from year to year and synchronised among individuals within populations. The proximate causes of such seeding dynamics, called masting, are still poorly understood in oak species that are widespread in the northern hemisphere, and whose fruiting dynamics dramatically impacts forest regeneration and biodiversity. Combining long-term surveys of oak airborne pollen amount and acorn production over large-scale field networks in temperate areas, and a mechanistic modelling approach, we found that the pollen dynamics is the key driver of oak masting. Mechanisms at play involved both internal resource allocation to pollen production synchronised among trees and spring weather conditions affecting the amount of airborne pollen available for reproduction. The sensitivity of airborne pollen to weather conditions might make oak masting and its ecological consequences highly sensitive to climate change.


Asunto(s)
Polen , Quercus , Tiempo (Meteorología) , Frutas , Semillas
4.
Am Nat ; 188(1): 66-75, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27322122

RESUMEN

Masting, a breeding strategy common in perennial plants, is defined by seed production that is highly variable over years and synchronized at the population level. Resource budget models (RBMs) proposed that masting relies on two processes: (i) the depletion of plant reserves following high fruiting levels, which leads to marked temporal fluctuations in fruiting; and (ii) outcross pollination that synchronizes seed crops among neighboring trees. We revisited the RBM approach to examine the extent to which masting could be impacted by the degree of pollination efficiency, by taking into account various logistic relationships between pollination success and pollen availability. To link masting to other reproductive traits, we split the reserve depletion coefficient into three biological parameters related to resource allocation strategies for flowering and fruiting. While outcross pollination is considered to be the key mechanism that synchronizes fruiting in RBMs, our model counterintuitively showed that intense masting should arise under low-efficiency pollination. When pollination is very efficient, medium-level masting may occur, provided that the costs of female flowering (relative to pollen production) and of fruiting (maximum fruit set and fruit size) are both very high. Our work highlights the powerful framework of RBMs, which include explicit biological parameters, to link fruiting dynamics to various reproductive traits and to provide new insights into the reproductive strategies of perennial plants.


Asunto(s)
Frutas , Polinización , Semillas , Reproducción , Árboles
5.
Evolution ; 69(3): 815-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25521015

RESUMEN

The idea that oxidative stress could be a major force governing evolutionary trade-offs has recently been challenged by experimental approaches in laboratory conditions, triggering extensive debates centered on theoretical and methodological issues. Here, we revisited the link between oxidative stress and reproduction by measuring multiple antioxidant and oxidative damages in wild-caught females of two sibling weevil species (Curculio elephas, C. glandium). The strength of our study arised from (1) studied species that were sympatric and exploited similar resource, but displayed contrasting reproductive strategies and (2) individuals were sampled throughout adult life so as to relate oxidative status to breeding effort. We found that the short-lived C. elephas sacrifices red-ox homeostasis for immediate reproduction upon emergence as characterized by low antioxidant defenses and elevated oxidative damage. Comparatively, C. glandium massively invests in antioxidant and maintains low oxidative damage, which may contribute to their extended prereproductive period. Intriguingly, we also reveal, for the first time in a field study, an unexpected reactivation of antioxidant defenses with the onset of reproduction. Our results thus support the existence of a strong, but complex relationship between oxidative stress and life-history evolution and highlight the need for a finer-scale picture of antioxidant strategies.


Asunto(s)
Evolución Biológica , Estrés Oxidativo , Reproducción , Simpatría , Gorgojos/fisiología , Animales , Antioxidantes/metabolismo , Cruzamiento , Catalasa/metabolismo , Femenino , Homeostasis , Masculino , Oogénesis , Estaciones del Año , Superóxido Dismutasa/metabolismo , Gorgojos/genética
6.
PLoS One ; 8(9): e76086, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086694

RESUMEN

There is empirical evidence of many diversified ways for energy to be acquired and allocated to reproduction, notably with strategies ranging from strict income breeding (females fueling their gametes with energy gained concomitantly during reproduction) to strict capital breeding (females storing nutrients prior reproduction). Until now, the question of whether diversification of these strategies might impact the way communities are organized has not been considered. Here, we suggest that diversified resource allocation strategies among competing species may contribute to their coexistence. We examined this hypothesis by focusing on communities composed of four phytophagous insect species that coexist and compete for egg-laying sites. From wild-caught females, we determined precisely the breeding period of each species and we described their resource acquisition and allocation to reproduction dynamics. We quantified in each species the total amount of larval energy stored by newly-emerging females and then monitored the total energy budget of females caught in the field before and throughout their breeding period. We found that the four sibling weevil species are markedly segregated along the income-capital-breeding continuum, which is correlated with clear time partitioning in their laying activity. Our results suggest that diversified resource allocation strategies might contribute to time partitioning of plant resources exploitation and thus indirectly to their coexistence. This work should further encourage studies examining the extent to which competitive coexistence might be affected by diversification of income-capital breeding strategies together with the intensity of interspecific competition, and considering the divergent evolution of these strategies.


Asunto(s)
Ecosistema , Metabolismo Energético/fisiología , Frutas/parasitología , Modelos Biológicos , Quercus/parasitología , Gorgojos/crecimiento & desarrollo , Animales , Femenino , Fertilidad/fisiología , Francia , Larva/fisiología , Modelos Logísticos , Reproducción/fisiología , Estaciones del Año , Especificidad de la Especie
7.
BMC Evol Biol ; 13: 28, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23379718

RESUMEN

BACKGROUND: Whereas the impact of endosymbionts on the ecology of their hosts is well known in some insect species, the question of whether host communities are influenced by endosymbionts remains largely unanswered. Notably, the coexistence of host species competing with each other, which is expected to be stabilized by their ecological differences, could be facilitated by differences in their endosymbionts. Yet, the composition of endosymbiotic communities housed by natural communities of competing host species is still almost unknown. In this study, we started filling this gap by describing and comparing the bacterial endosymbiotic communities of four sibling weevil species (Curculio spp.) that compete with each other to lay eggs into oak acorns (Quercus spp.) and exhibit marked ecological differences. RESULTS: All four species housed the primary endosymbiont Candidatus Curculioniphilus buchneri, yet each of these had a clearly distinct community of secondary endosymbionts, including Rickettsia, Spiroplasma, and two Wolbachia strains. Notably, three weevil species harbored their own predominant facultative endosymbiont and possessed the remaining symbionts at a residual infection level. CONCLUSIONS: The four competing species clearly harbor distinct endosymbiotic communities. We discuss how such endosymbiotic communities could spread and keep distinct in the four insect species, and how these symbionts might affect the organization and species richness of host communities.


Asunto(s)
Quercus , Rickettsiaceae/fisiología , Spiroplasma/fisiología , Simbiosis , Gorgojos/microbiología , Gorgojos/fisiología , Animales , Ecosistema , Femenino , Francia , Masculino , Datos de Secuencia Molecular , Filogenia , Rickettsia/clasificación , Rickettsia/fisiología , Rickettsiaceae/clasificación , Spiroplasma/clasificación , Gorgojos/clasificación , Wolbachia/clasificación , Wolbachia/fisiología
8.
PLoS One ; 6(3): e18039, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21445318

RESUMEN

BACKGROUND: One major challenge in understanding how biodiversity is organized is finding out whether communities of competing species are shaped exclusively by species-level differences in ecological traits (niche theory), exclusively by random processes (neutral theory of biodiversity), or by both processes simultaneously. Communities of species competing for a pulsed resource are a suitable system for testing these theories: due to marked fluctuations in resource availability, the theories yield very different predictions about the timing of resource use and the synchronization of the population dynamics between the competing species. Accordingly, we explored mechanisms that might promote the local coexistence of phytophagous insects (four sister species of the genus Curculio) competing for oak acorns, a pulsed resource. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the time partitioning of the exploitation of oak acorns by the four weevil species in two independent communities, and we assessed the level of synchronization in their population dynamics. In accordance with the niche theory, overall these species exhibited marked time partitioning of resource use, both within a given year and between different years owing to different dormancy strategies between species, as well as distinct demographic patterns. Two of the four weevil species, however, consistently exploited the resource during the same period of the year, exhibited a similar dormancy pattern, and did not show any significant difference in their population dynamics. CONCLUSIONS/SIGNIFICANCE: The marked time partitioning of the resource use appears as a keystone of the coexistence of these competing insect species, except for two of them which are demographically nearly equivalent. Communities of consumers of pulsed resources thus seem to offer a promising avenue for developing a unifying theory of biodiversity in fluctuating environments which might predict the co-occurrence, within the same community, of species that are ecologically either very similar, or very different.


Asunto(s)
Biodiversidad , Insectos/fisiología , Modelos Teóricos , Animales , Insectos/clasificación , Dinámica Poblacional
9.
Am Nat ; 175(6): 650-61, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20415532

RESUMEN

Male choosiness for mates is an underexplored mechanism of sexual selection. A few theoretical studies suggest that males may exhibit--but only under rare circumstances--a reversed male mate choice (RMMC; i.e., highly competitive males focus on the most fecund females, while the low-quality males exclusively pair with less fecund mates to avoid being outcompeted by stronger rivals). Here we propose a new model to explore RMMC by relaxing some of the restrictive assumptions of the previous models and by considering an extended range of factors known to alter the strength of sexual selection (males' investment in reproduction, difference of quality between females, operational sex ratio). Unexpectedly, we found that males exhibited a reversed mate choice under a wide range of circumstances. RMMC mostly occurs when the female encounter rate is high and males devote much of their time to breeding. This condition-dependent strategy occurs even if there is no risk of injury during the male-male contest or when the difference in quality between females is small. RMMC should thus be a widespread yet underestimated component of sexual selection and should largely contribute to the assortative pairing patterns observed in numerous taxa.


Asunto(s)
Conducta Competitiva , Preferencia en el Apareamiento Animal , Modelos Biológicos , Animales , Femenino , Fertilidad , Teoría del Juego , Masculino , Razón de Masculinidad
10.
J Theor Biol ; 241(4): 725-33, 2006 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-16476451

RESUMEN

Dynamic state-dependent models have been widely developed since 1990s for solving questions in evolutionary ecology. Up to now, these models were mainly run over finite-time horizon. However, for many biological questions an infinite-time horizon perspective could be more appropriate, especially when the end of the modeled period is state- rather than time-dependent. Despite this approach is widely used in the field of economics and operational research, thus far no work has been providing biologists with a general method to solve infinite-time horizon problems. Here we present such a method, through the exhaustive description of an algorithm that we implement to determine the strategy an organism should follow to reach a particular state as fast as possible while limiting mortality risk. To illustrate that method we explored web-building behavior in an orb-weaving spider. How are adult females predicted to build their successive webs to gain energy, grow, and lay their first clutch as fast as possible, without suffering from either predation or starvation? From this example, we first show how an optimal strategy over infinite-time horizon can be processed and selected. Second, we analyse variations of the optimal web-building strategy along with the spider's body weight and predation risk during web building. Our model yields two main predictions: (1) spiders reduce their web size as they are gaining weight due to body-mass-dependent cost of web-building behavior, and (2) this reduction in web size starts at lower weight under higher predation risk.


Asunto(s)
Conducta Animal/fisiología , Modelos Biológicos , Arañas/fisiología , Algoritmos , Animales , Peso Corporal/fisiología , Femenino , Conducta Predatoria/fisiología , Medición de Riesgo , Arañas/crecimiento & desarrollo
11.
Naturwissenschaften ; 90(6): 269-72, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12835838

RESUMEN

In numerous spider species, reproductive success of adult females has been shown to be positively correlated with their body mass. We suggest, however, that spiders may incur greater foraging costs as their body mass increases due to the numerous and complex locomotor bouts needed to build an orb-web. Such a body-mass-dependent cost should, in turn, affect the web-building decisions of spiders. In the laboratory, we tested the influence of body mass on energetic expenditure (measured as mass loss) during web-building behavior in Zygiella x-notata. Our results showed (1) that energetic costs associated with web-building were closely related to body mass and to web-building activity, and (2) that as their body mass increased, spiders reduced the amount of silk used per web, while their foraging effort simultaneously increased. This work gives new insights into web-building behavior and energy allocation strategies of weaving spiders.


Asunto(s)
Conducta Animal/fisiología , Peso Corporal/fisiología , Arañas/fisiología , Animales , Animales de Laboratorio , Animales Salvajes , Femenino , Vivienda para Animales , Masculino , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...