Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(10): 12596-12605, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35234435

RESUMEN

Effective heterogeneous photocatalysts capable of detoxifying chemical threats in practical settings must exhibit outstanding device integrity. We report a copolymerization that yields robust, porous, processible, chromophoric BODIPY (BDP; boron-dipyrromethene)-containing polymers of intrinsic microporosity (BDP-PIMs). Installation of a pentafluorophenyl at the meso position of a BDP produced reactive monomer that when combined with 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-spirobisindane (TTSBI) and tetrafluoroterephthalonitrile (TFTPN) yields PIM-1. Postsynthetic modification of these polymers yields Br-BDP-PIM-1a and -1b─polymers containing bromine at the 2,6-positions. Remarkably, the brominated polymers display porosity and processability features similar to those of H-BDP-PIMs. Gas adsorption reveals molecular-scale porosity and Brunette-Emmet-Teller surface areas as high as 680 m2 g-1. Electronic absorption spectra reveal charge-transfer (CT) bands centered at 660 nm, while bands arising from local excitations, LE, of BDP and TFTPN units are at 530 and 430 nm, respectively. Fluorescence spectra of the polymers reveal a Förster resonance energy-transfer (FRET) pathway to BDP units when TFTPN units are excited at 430 nm; weak phosphorescence at room temperature indicates a singlet-to-triplet intersystem crossing. The low-lying triplet state is well positioned energetically to sensitize the conversion of ground-state (triplet) molecular oxygen to electronically excited singlet oxygen. Photosensitization capabilities of these polymers toward singlet-oxygen-driven detoxification of a sulfur-mustard simulant 2-chloroethyl ethyl sulfide (CEES) have been examined. While excitation of CT and LEBDP bands yields weak catalytic activity (t1/2 > 15 min), excitation to higher energy states of TFTPN induces significant increases in photoactivity (t1/2 ≅ 5 min). The increase is attributable to (i) enhanced light collection, (ii) FRET between TFTPN and BDP, (iii) the presence of heavy atoms (bromine) having large spin-orbit coupling energies that can facilitate intersystem crossing from donor-acceptor CT-, FRET-, or LE-generated BDP singlet states to BDP-related triplet states, and (iv) polymer triplet excited-state sensitization of the formation of CEES-reactive, singlet oxygen.

2.
ACS Nano ; 16(4): 5358-5375, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35357125

RESUMEN

The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles (SiµP) to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues. The microparticles internalized induce high cytotoxicity per particle in cancerous HeLa cells, and the less densely packed functionalization using cyclophanes promotes higher cytotoxicity per bipy than with open-chain analogues. The self-renewing ability of the particles and their proximity to cell membranes may account for increased lipid peroxidation, achieving toxicity at much lower concentrations than that in solution and in less time, inducing highly efficient cytotoxicity in cancerous cells.


Asunto(s)
Células HeLa , Humanos , Peroxidación de Lípido , Membrana Celular
3.
J Am Chem Soc ; 143(1): 163-175, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33347315

RESUMEN

The solid-state properties of organic radicals depend on radical-radical interactions that are influenced by the superstructure of the crystalline phase. Here, we report the synthesis and characterization of a substituted tetracationic cyclophane, cyclobis(paraquat-p-1,4-dimethoxyphenylene), which associates in its bisradical dicationic redox state with the methyl viologen radical cation (MV•+) to give a 1:1 inclusion complex. The (super)structures of the reduced cyclophane and this 1:1 complex in the solid state deviate from the analogous (super)structures observed for the reduced state of cyclobis(paraquat-p-phenylene) and that of its trisradical tricationic complex. Titration experiments reveal that the methoxy substituents on the p-phenylene linkers do not influence binding of the cyclophane toward small neutral guests-such as dimethoxybenzene and tetrathiafulvalene-whereas binding of larger radical cationic guests such as MV•+ by the reduced cyclophane decreases 10-fold. X-ray diffraction analysis reveals that the solid-state superstructure of the 1:1 complex constitutes a discrete entity with weak intermolecular orbital overlap between neighboring complexes. Transient nutation EPR experiments and DFT calculations confirm that the complex has a doublet spin configuration in the ground state as a result of the strong orbital overlap, while the quartet-state spin configuration is higher in energy and inaccessible at ambient temperature. Superconducting quantum interference device (SQUID) measurements reveal that the trisradical tricationic complexes interact antiferromagnetically and form a one-dimensional Heisenberg antiferromagnetic chain along the a-axis of the crystal. These results offer insights into the design and synthesis of organic magnetic materials based on host-guest complexes.

4.
J Am Chem Soc ; 142(43): 18554-18564, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32981316

RESUMEN

Designing new materials for the effective detoxification of chemical warfare agents (CWAs) is of current interest given the recent use of CWAs. Although halogenated boron-dipyrromethene derivatives (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BDP or BODIPY) at the 2 and 6 positions have been extensively explored as efficient photosensitizers for generating singlet oxygen (1O2) in homogeneous media, their utilization in the design of porous organic polymers (POPs) has remained elusive due to the difficulty of controlling polymerization processes through cross-coupling synthesis pathways. Our approach to overcome these difficulties and prepare halogenated BODIPY-based porous organic polymers (X-BDP-POP where X = Br or I) represents an attractive alternative through post-synthesis modification (PSM) of the parent hydrogenated polymer. Upon synthesis of both the parent polymer, H-BDP-POP, and its post-synthetically modified derivatives, Br-BDP-POP and I-BDP-POP, the BET surface areas of all POPs have been measured and found to be 640, 430, and 400 m2·g-1, respectively. In addition, the insertion of heavy halogen atoms at the 2 and 6 positions of the BODIPY unit leads to the quenching of fluorescence (both polymer and solution-phase monomer forms) and the enhancement of phosphorescence (particularly for the iodo versions of the polymers and monomers), as a result of efficient intersystem crossing. The heterogeneous photocatalytic activities of both the parent POP and its derivatives for the detoxification of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), have been examined; the results show a significant enhancement in the generation of singlet oxygen (1O2). Both the bromination and iodination of H-BDP-POP served to shorten by 5-fold of the time needed for the selective and catalytic photo-oxidation of CEES to 2-chloroethyl ethyl sulfoxide (CEESO).

5.
J Am Chem Soc ; 142(39): 16600-16609, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32865399

RESUMEN

The phenomenon of photon upconversion, in which a system absorbs two or more photons of lower energy and emits a photon of higher energy, has been used in numerous applications, including non-destructive bioimaging, deep-penetrating photodynamic therapy, catalysis, and photovoltaic devices. To date, photon upconversion has been observed typically in inorganic nanocrystals, nanoparticles, metal-organic frameworks, supramolecular assemblies, and organic dyads. Herein, we demonstrate a new strategy for harnessing photon upconversion-supramolecular upconversion-based on host-guest chemistry. We have identified a box-like fluorescent tetracationic host incorporating a thiazolothiazole emitter, which can accommodate a guest-sensitizer, 5,15-diphenylporphyrin, inside its cavity, and demonstrated that the host-guest inclusion complex displays triplet-fusion upconversion when the guest is excited with low-energy light. The strategy of supramolecular upconversion has been employed successfully in two other host-guest complexes-with hosts comprised of anthracene emitters and a 5,15-diphenylporphyrin guest-corroborating the fact that this strategy is a general one and can be applied to the design of a new family of host-guest complexes for photon upconversion. More importantly, supramolecular upconversion is accessible in solution under dilute conditions (µM) compared to most of the existing approaches that require significantly higher concentrations (mM) of emitters and/or sensitizers. Transient absorption spectroscopy and density functional theory have been employed in order to confirm a triplet-fusion upconversion mechanism. Host-guest complexation-mediated supramolecular photon upconversion eliminates multiple issues in the existing systems related to high working concentrations, high incident laser power, and low optical penetration depths.

6.
Adv Mater ; 32(32): e2001592, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32602131

RESUMEN

Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well-defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+ ) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2 g-1 in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin-orbit coupling associated to Br heavy atoms in 1,3,5,8-tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+ supramolecular dyad. The TBP⊂ExBox4+ complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed-electronic states. The lowest triplet state (T1 , 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+ , for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4 , confirming the importance of the newly formed excited-state manifold in TBP⊂ExBox4+ for the population of the low-lying T1 state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host-guest chemistry.

7.
J Am Chem Soc ; 142(17): 7956-7967, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32233402

RESUMEN

Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.


Asunto(s)
Antracenos/química , Humanos , Estructura Molecular
8.
J Am Chem Soc ; 142(5): 2541-2548, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31895548

RESUMEN

Aqueous rechargeable zinc batteries (ZBs) have received considerable attention recently for large-scale energy storage systems in terms of rate performance, cost, and safety. Nevertheless, these ZBs still remain a subject for investigation, as researchers search for cathode materials enabling high performance. Among the various candidate cathode materials for ZBs, quinone compounds stand out as candidates because of their high specific capacity, sustainability, and low cost. Quinone-based cathodes, however, suffer from the critical limitation of undergoing dissolution during battery cycling, leading to a deterioration in battery life. To address this problem, we have introduced a redox-active triangular phenanthrenequinone-based macrocycle (PQ-Δ) with a rigid geometry and layered superstructure. Notably, we have confirmed that Zn2+ ions, together with H2O molecules, can be inserted into the PQ-Δ organic cathode, and, as a consequence, the interfacial resistance between the cathode and electrolytes is decreased effectively. Density functional theory calculations have revealed that the low interfacial resistance can be attributed mainly to decreasing the desolvation energy penalty as a result of the insertion of hydrated Zn2+ ions in the PQ-Δ cathode. The combined effects of the insertion of hydrated Zn2+ ions and the robust triangular structure of PQ-Δ serve to achieve a large reversible capacity of 210 mAh g-1 at a high current density of 150 mA g-1, along with an excellent cycle-life, that is, 99.9% retention after 500 cycles. These findings suggest that the utilization of electron-active organic macrocycles, combined with the low interfacial resistance associated with the solvation of divalent carrier ions, is essential for the overall performance of divalent battery systems.

9.
J Am Chem Soc ; 141(47): 18727-18739, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31580664

RESUMEN

A series of donor-acceptor (D-A) naphthalene-viologen-based cyclophanes of different shapes, sizes, and symmetries have been synthesized and characterized. Solution optical studies on these cyclophanes reveal the existence of photoinduced intramolecular charge transfer (CT) at 465 nm from naphthalene (D) to viologen (A) units, resulting in a conformational change in the viologen units and the emergence of an emission at 540 nm. The D-A cyclophanes with box-like and hexagon-like shapes offer an opportunity to control the arrangement within 2D layers where D-A interactions direct the superstructures. While a box-like 2,6-disubstituted naphthalene-based tetracationic cyclophane does not form square tiling patterns, a truncated hexagon-like congener self-assembles to form a hexagonal superstructure which, in turn, adopts a hexagonal tiling pattern. Tessellation of the more rigid and highly symmetrical 2,7-disubstituted naphthalene-based cyclophanes leads to the formation of 2D square and honeycomb tiling patterns with the box-like and hexagon-like cyclophanes, respectively. Co-crystallization of the box-like cyclophanes with tetrathiafulvalene (TTF) results in the formation of D-A CT interactions between TTF and viologen units, leading to tubular superstructures. Co-crystallization of the hexagon-like cyclophane with TTF generates well-ordered and uniform tubular superstructures in which the TTF-viologen CT interactions and naphthalene-naphthalene [π···π] interactions propagate with 2D topology. In the solid state, the TTF-cyclophane co-crystals are paramagnetic and display dual intra- and intermolecular CT behavior at ∼470 and ∼1000 nm, respectively, offering multi-responsive materials with potential pathways for electron transport.

10.
J Am Chem Soc ; 141(44): 17783-17795, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31526001

RESUMEN

Tessellation of organic polygons though [π···π] and charge-transfer (CT) interactions offers a unique opportunity to construct supramolecular organic electronic materials with 2D topologies. Our approach to exploring the 3D topology of 2D tessellations of a naphthalene diimide-based molecular triangle (NDI-Δ) reveals that the 2D molecular arrangement is sensitive to the identity of the solvent and solute concentrations. Utilization of nonhalogenated solvents, combined with careful tailoring of the concentrations, results in NDI-Δ self-assembling though [π···π] interactions into 2D honeycomb triangular and hexagonal tiling patterns. Cocrystallization of NDI-Δ with tetrathiafulvalene (TTF) leads systematically to the formation of 2D tessellations as a result of superstructure-directing CT interactions. Different solvents lead to different packing arrangements. Using MeCN, CHCl3, and CH2Cl2, we identified three sets of cocrystals, namely CT-A, CT-B, and CT-C, respectively. Solvent modulation plays a critical role in controlling not only the NDI-Δ:TTF stoichiometric ratios and the molecular arrangements in the crystal superstructures, but also prevents the inclusion of TTF guests inside the cavities of NDI-Δ. Confinement of TTF inside the NDI-Δ cavities in the CT-A superstructure enhances the CT character with the observation of a broad absorption band in the NIR region. In the CT-B superstructure, the CHCl3 lattice molecules establish a set of [Cl···Cl] and [Cl···S] intermolecular interactions, leading to the formation of a hexagonal grid of solvent in which NDI-Δ forms a triangular grid. In the CT-C superstructure, three TTF molecules self-assemble, forming a supramolecular isosceles triangle TTF-Δ, which tiles in a plane alongside the NDI-Δ, producing a 3 + 3 honeycomb tiling pattern of the two different polygons. Solid-state spectroscopic investigations on CT-C revealed the existence of an absorption band at 2500 nm, which on the basis of TDDFT calculations, was attributed to the mixed-valence character between two TTF•+ radical cations and one neutral TTF molecule.

11.
J Am Chem Soc ; 141(31): 12296-12304, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31256588

RESUMEN

Prompted by a knowledge of the photoprotective mechanism operating in photosystem supercomplexes and bacterial antenna complexes by pigment binding proteins, we have appealed to a boxlike synthetic receptor (ExBox·4Cl) that binds a photosensitizer, 5,15-diphenylporphyrin (DPP), to provide photoprotection by regulating light energy. The hydrophilic ExBox4+ renders DPP soluble in water and modulates the phototoxicity of DPP by trapping it in its cavity and releasing it when required. While trapping removes access to the DPP triplet state, a pH-dependent release of diprotonated DPP (DPPH22+) restores the triplet deactivation pathway, thereby activating its ability to generate reactive oxygen species. We have employed the ExBox4+-bound DPP complex (ExBox4+⊃DPP) for the safe delivery of DPP into the lysosomes of cancer cells, imaging the cells by utilizing the fluorescence of the released DPPH22+ and regulating photodynamic therapy to kill cancer cells with high efficiency.


Asunto(s)
Lisosomas/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Porfirinas/farmacología
12.
J Am Chem Soc ; 141(17): 6875-6889, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30875208

RESUMEN

The fluorescent 9'-anthracenyl-functionalized dithiadiazolyl radical (3) exhibits four structurally determined crystalline phases, all of which are monomeric in the solid state. Polymorph 3α (monoclinic P21/ c, Z' = 2) is isolated when the radical is condensed onto a cold substrate (enthalpically favored polymorph), whereas 3ß (orthorhombic P21 21 21, Z' = 3) is collected on a warm substrate (entropically favored polymorph). The α and ß polymorphs exhibit chemically distinct structures with 3α exhibiting face-to-face π-π interactions between anthracenyl groups, while 3ß exhibits edge-to-face π-π interactions. 3α undergoes an irreversible conversion to 3ß on warming to 120 °C (393 K). The ß-phase undergoes a series of reversible solid-state transformations on cooling; below 300 K a phase transition occurs to form 3γ (monoclinic P21/ c, Z' = 1), and on further cooling below 165 K, a further transition is observed to 3δ (monoclinic P21/ n, Z' = 2). Both 3ß â†’ 3γ and 3γ → 3δ transitions are reversible (single-crystal X-ray diffraction), and the 3γ → 3δ process exhibits thermal hysteresis with a clear feature observed by heat capacity measurements. Heating 3ß above 160 °C generates a fifth polymorph (3ε) which is distinct from 3α-3δ based on powder X-ray diffraction data. The magnetic behavior of both 3α and the 3ß/3γ/3δ system reflect an S = 1/2 paramagnet with weak antiferromagnetic coupling. The reversible 3δ ↔ 3γ phase transition exhibits thermal hysteresis of 20 K. Below 50 K, the value of χm T for 3δ approaches 0 emu·K·mol-1 consistent with formation of a gapped state with an S = 0 ground-state configuration. In solution, both paramagnetic 3 and diamagnetic [3][GaCl4] exhibit similar absorption and emission profiles reflecting similar absorption and emission mechanisms for paramagnetic and diamagnetic forms. Both emit in the deep-blue region of the visible spectrum (λem ∼ 440 nm) upon excitation at 255 nm with quantum yields of 4% (3) and 30% ([3][GaCl4]) affording a switching ratio [ΦF(3+)/ΦF(3)] of 7.5 in quantum efficiency with oxidation state. Solid-state films of both 3 and [3][GaCl4] exhibit emission bands at a longer wavelength (490 nm) attributed to excimer emission.

13.
Dalton Trans ; 47(44): 15725-15736, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30334556

RESUMEN

Reaction of 2,6-dicyanopyridine with 2 equiv. of 2-(propylthio)benzenamine in the presence of lithium bis(trimethylsilyl)amide, followed by ring-closing oxidation with N-chlorosuccinimide affords the novel tridentate ligand, 2,6-bis-(1',2',4'-benzothiadiazinyl)pyridine (LH2). Electrochemical studies on the free ligand LH2 reveal a single well-defined 2e- oxidation process with E1/2 = +0.90 V. EPR studies of the in situ chemical oxidation of LH2 reveal the generation of a benzotriazinyl radical. Reactions of ligand LH2 with a range of divalent transition metal salts in either MeOH or MeCN in a 2 : 1 ratio at ambient temperatures afforded mononuclear complexes with general formula [M(LH2)2][X]2 (M = Mn, X = CF3SO3 (1); Fe, X = CF3SO3 (2); Fe, X = BF4 (3); Co, X = Cl (4); Ni, X = Cl (5); Zn, X = CF3SO3 (6)) and the 1 : 1 complex [Cu(LH2)(NO3)2] (7). In all cases the LH2 ligand binds in a tridentate N,N',N'' chelate fashion via benzothiadiazinyl NBTDA and pyridyl Npy atoms. The low spin FeII complexes (2 and 3) were implemented for NMR and UV-Vis solution studies of ligand reactivity as well as cyclic voltammetry which reveal two 1e-oxidation waves. The metal complexes 1-6 are discussed and reveal a range of geometries between octahedral and trigonal prismatic with the greatest deviation from octahedral symmetry apparent for ions with no crystal field stabilisation energy, i.e. d10 ZnII and high spin d5 MnII ions.

14.
J Am Chem Soc ; 140(20): 6260-6270, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29688006

RESUMEN

The pyren-1'-yl-functionalized dithiadiazolyl (DTDA) radical, C16H9CNSSN (1), is monomeric in solution and exhibits fluorescence in the deep-blue region of the visible spectrum (440 nm) upon excitation at 241 nm. The salt [1][GaCl4] exhibits similar emission, reflecting the largely spectator nature of the radical in the fluorescence process, although the presence of the radical leads to a modest quenching of emission (ΦF = 98% for 1+ and 50% for 1) through enhancement of non-radiative decay processes. Time-dependent density functional theory studies on 1 coupled with the similar emission profiles of both 1+ and 1 are consistent with the initial excitation being of predominantly pyrene π-π* character. Spectroscopic studies indicate stabilization of the excited state in polar media, with the fluorescence lifetime for 1 (τ = 5 ns) indicative of a short-lived excited state. Comparative studies between the energies of the frontier orbitals of pyren-1'-yl nitronyl nitroxide (2, which is not fluorescent) and 1 reveal that the energy mismatch and poor spatial overlap between the DTDA radical SOMO and the pyrene π manifold in 1 efficiently inhibit the non-radiative electron-electron exchange relaxation pathway previously described for 2. Solid-state films of both 1 and [1][GaCl4] exhibit broad emission bands at 509 and 545 nm, respectively. Incorporation of 1 within a host matrix for OLED fabrication revealed electroluminescence, with CIE coordinates of (0.205, 0.280) corresponding to a sky-blue emission. The brightness of the device reached 1934 cd/m2 at an applied voltage of 16 V. The crystal structure of 1 reveals a distorted π-stacked motif with almost regular distances between the pyrene rings but alternating long-short contacts between DTDA radicals. Solid state measurements on a thin film of 1 reveal emission occurs at shorter wavelengths (375 nm) whereas conductivity measurements on a single crystal of 1 show a photoconducting response at longer wavelength excitation (455 nm).

15.
J Am Chem Soc ; 138(51): 16779-16786, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27977173

RESUMEN

The α-and ß-phases of the thiazyl radical p-NCC6F4CNSSN• (1) can be selectively prepared by careful control of the sublimation conditions, with the α-phase crystallizing preferentially when the substrate temperature is maintained below -10 °C, whereas the ß-phase is isolated when the substrate temperature is maintained at or above ambient temperature. Differential scanning calorimatry studies reveal that the α-phase converts to the ß-phase upon warming over the range 111-117 °C (ΔH = +4 kJ·mol-1) via a melt-recrystallization process, with the ß-phase itself melting at 167-170 °C (ΔHfus = 27 kJ·mol-1). IR and Raman spectroscopy can be used to clearly discriminate between 1α and 1ß. The α-phase shows a broad maximum in the magnetic susceptibility around 8 K that, coupled with a broad maximum in the heat capacity, is indicative of short-range order. Some field dependence of the susceptibility below 3 K is observed, but the lack of features in the ac susceptibility, M vs H plots, or heat capacity mitigates against long-range order in 1α.

17.
Dalton Trans ; 43(34): 12996-3005, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25030211

RESUMEN

Reaction of the novel ligand 3-(2'-pyridyl)-benzo-1,2,4-thiadiazine (L) with the transition metal chloride salts MCl2·xH2O (M(II) = Mn, Fe, Co, Cu and Zn) in a 2 : 1 mole ratio afforded the mononuclear octahedral (high spin) complexes L2MCl2 (1a-1e respectively) in which L binds in a chelate fashion via N(2) and the pyridyl N atoms. In the case of CuCl2 the intermediate 1 : 1 four-coordinate complex LCuCl2 (2) was also isolated which adopts a polymeric structure with pseudo-square planar molecules linked via long Cu···S contacts (d(Cu···S) = 2.938(1) Å) in the apical position. In the presence of non-interacting ions, 3 : 1 complexes are isolated, exemplified by the reaction of L with Fe(CF3SO3)2 in a 3 : 1 ratio which affords the low spin complex [L3Fe][CF3SO3]2 (3). Reaction of L with VCl3 in a 2 : 1 mole ratio under aerobic conditions afforded the vanadyl complex [L2V(=O)Cl][Cl] (4).

18.
Chem Commun (Camb) ; 50(28): 3741-3, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24577724

RESUMEN

A new macrocyclic complex DyCl3(LN5)·4H2O (1) has been prepared in which the Dy(III) ion is equatorially bound by an N5-donor macrocycle (LN5). Ac susceptibility data reveal slow relaxation of the magnetisation in zero field below 15 K with a distribution of relaxation rates.

19.
J Org Chem ; 79(1): 314-27, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24350615

RESUMEN

A two-step route to 1,3-disubstituted benzo- and pyrido-fused 1,2,4-triazinyl radicals is presented. The route involves the N'-(2-nitroarylation) of easily prepared N'-(het)arylhydrazides via nucleophilic aromatic substitution of 1-halo-2-nitroarenes, which in most cases gives N'-(het)aryl-N'-[2-nitro(het)aryl]hydrazides in good yields. Mild reduction of the nitro group followed by an acid-mediated cyclodehydration gives the fused triazines, which upon alkali treatment afford the desired radicals. Fifteen examples of radicals are presented bearing a range of substituents at N-1, C-3, and C-7, including the pyrid-2-yl and 8-aza analogues. This route to the N'-(het)aryl-N'-[2-nitro(het)aryl]hydrazides, which works well with benzo- and picolinohydrazides, required a modification for aceto- and trifluoroacetohydrazides that involved a multistep synthesis of asymmetrically 1,1-diaryl-substituted hydrazines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...