Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(3): e0213650, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30921355

RESUMEN

Previous studies reported that secreted frizzled-related protein-5 (Sfrp5) decreases beta cell proliferation and increases fasting insulin levels, but studies on direct effects of Sfrp5 on insulin secretion and its underlying mechanisms are missing. This study examined effects of Sfrp5 on (i) beta cell viability and proliferation, (ii) basal and glucose-stimulated insulin secretion and (iii) canonical and non-canonical Wnt signalling pathways. We incubated rat INS-1E cells with 0.1, 1 or 5 µg/ml recombinant Sfrp5 for 24h. We measured basal and glucose-stimulated insulin secretion at glucose concentrations of 2.5 and 20 mmol/l. Phosphorylated and total protein content as well as mRNA levels of markers of cell proliferation, canonical and non-canonical Wnt signalling pathways were examined using Western blotting and real-time PCR. Differences between treatments were analysed by repeated measurement one-way ANOVA or Friedman's test followed by correction for multiple testing using the Benjamini-Hochberg procedure. At 5 µg/ml, Sfrp5 reduced mRNA levels of cyclin-B1 by 25% (p<0.05). At 1 and 5 µg/ml, Sfrp5 increased glucose-stimulated insulin secretion by 24% and by 34% (both p<0.05), respectively, but had no impact on basal insulin secretion. Sfrp5 reduced the phosphorylation of the splicing forms p46 and p54 of JNK by 39% (p<0.01) and 49% (p<0.05), respectively. In conclusion, Sfrp5 reduced markers of cell proliferation, but increased in parallel dose-dependently glucose-stimulated insulin secretion in INS-1E cells. This effect is likely mediated by reduced JNK activity, an important component of the non-canonical Wnt signalling pathway.


Asunto(s)
Adipoquinas/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Animales , Glucemia/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular , Ciclina B1/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
2.
Cell Rep ; 9(4): 1495-506, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456138

RESUMEN

Activation of c-Jun N-terminal kinase 1 (JNK1)- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2)-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP)-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Quinasa I-kappa B/metabolismo , Resistencia a la Insulina , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/enzimología , Obesidad/enzimología , Potenciales de Acción/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Leptina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , Neuronas/efectos de los fármacos
3.
Nat Neurosci ; 16(8): 1042-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817550

RESUMEN

Dopaminergic (DA) signaling governs the control of complex behaviors, and its deregulation has been implicated in a wide range of diseases. Here we demonstrate that inactivation of the Fto gene, encoding a nucleic acid demethylase, impairs dopamine receptor type 2 (D2R) and type 3 (D3R) (collectively, 'D2-like receptor')-dependent control of neuronal activity and behavioral responses. Conventional and DA neuron-specific Fto knockout mice show attenuated activation of G protein-coupled inwardly-rectifying potassium (GIRK) channel conductance by cocaine and quinpirole. Impaired D2-like receptor-mediated autoinhibition results in attenuated quinpirole-mediated reduction of locomotion and an enhanced sensitivity to the locomotor- and reward-stimulatory actions of cocaine. Analysis of global N(6)-methyladenosine (m(6)A) modification of mRNAs using methylated RNA immunoprecipitation coupled with next-generation sequencing in the midbrain and striatum of Fto-deficient mice revealed increased adenosine methylation in a subset of mRNAs important for neuronal signaling, including many in the DA signaling pathway. Several proteins encoded by these mRNAs had altered expression levels. Collectively, FTO regulates the demethylation of specific mRNAs in vivo, and this activity relates to the control of DA transmission.


Asunto(s)
Dopamina/fisiología , Neuronas Dopaminérgicas/enzimología , Mesencéfalo/fisiología , Oxigenasas de Función Mixta/fisiología , Oxo-Ácido-Liasas/fisiología , Adenina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Cocaína/farmacología , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Metilación , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxigenasas de Función Mixta/deficiencia , Oxigenasas de Función Mixta/genética , Oxo-Ácido-Liasas/deficiencia , Oxo-Ácido-Liasas/genética , Fenotipo , Quinpirol/farmacología , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Receptores de Dopamina D2/deficiencia , Receptores de Dopamina D2/fisiología , Receptores de Dopamina D3/fisiología , Recompensa , Transducción de Señal/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 109(44): 18132-7, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23064638

RESUMEN

Rat insulin promoter (RIP)-expressing neurons in the hypothalamus control body weight and energy homeostasis. However, genetic approaches to study the role of these neurons have been limited by the fact that RIP expression is predominantly found in pancreatic ß-cells, which impedes selective targeting of neurons. To define the function of hypothalamic RIP-expressing neurons, we set out to acutely and selectively eliminate them via diphtheria toxin-mediated ablation. Therefore, the diphtheria toxin receptor transgene was specifically expressed upon RIP-specific Cre recombination using a RIP-Cre line first described by Herrera (RIP(HER)-Cre) [Herrera PL (2000) Development 127:2317-2322]. Using proopiomelanocortin-expressing cells located in the arcuate nucleus of the hypothalamus and in the pituitary gland as a model, we established a unique protocol of intracerebroventricular application of diphtheria toxin to efficiently ablate hypothalamic cells with no concomitant effect on pituitary proopiomelanocortin-expressing corticotrophs in the mouse. Using this approach to ablate RIP(HER) neurons in the brain, but not in the pancreas, resulted in decreased food intake and loss of body weight and fat mass. In addition, ablation of RIP(HER) neurons caused increased c-Fos immunoreactivity of neurons in the paraventricular nucleus (PVN) of the hypothalamus. Moreover, transsynaptic tracing of RIP(HER) neurons revealed labeling of neurons located in the PVN and dorsomedial hypothalamic nucleus. Thus, our experiments indicate that RIP(HER) neurons inhibit anorexigenic neurons in the PVN, revealing a basic orexigenic nature of these cells.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Insulina/genética , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Regiones Promotoras Genéticas , Animales , Núcleo Arqueado del Hipotálamo/citología , Conducta Alimentaria , Prueba de Tolerancia a la Glucosa , Ratones , Núcleo Hipotalámico Paraventricular/citología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Pérdida de Peso
5.
J Biol Chem ; 287(9): 6431-40, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22210772

RESUMEN

Mice with a combined deficiency in the α2ß1 and α11ß1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2ß1 or α11ß1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.


Asunto(s)
Enanismo/genética , Enanismo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Integrina alfa2beta1/genética , Integrinas/genética , Receptores de Colágeno/genética , Animales , Densidad Ósea/genética , Huesos/citología , Huesos/fisiología , Colágeno/metabolismo , Matriz Extracelular/fisiología , Femenino , Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Homeostasis/fisiología , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Osteoblastos/fisiología , Transducción de Señal/fisiología
6.
Nat Neurosci ; 14(7): 911-8, 2011 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-21642975

RESUMEN

Steroidogenic factor 1 (SF-1)-expressing neurons of the ventromedial hypothalamus (VMH) control energy homeostasis, but the role of insulin action in these cells remains undefined. We show that insulin activates phosphatidylinositol-3-OH kinase (PI3K) signaling in SF-1 neurons and reduces firing frequency in these cells through activation of K(ATP) channels. These effects were abrogated in mice with insulin receptor deficiency restricted to SF-1 neurons (SF-1(ΔIR) mice). Whereas body weight and glucose homeostasis remained the same in SF-1(ΔIR) mice as in controls under a normal chow diet, they were protected from diet-induced leptin resistance, weight gain, adiposity and impaired glucose tolerance. High-fat feeding activated PI3K signaling in SF-1 neurons of control mice, and this response was attenuated in the VMH of SF-1(ΔIR) mice. Mimicking diet-induced overactivation of PI3K signaling by disruption of the phosphatidylinositol-3,4,5-trisphosphate phosphatase PTEN led to increased body weight and hyperphagia under a normal chow diet. Collectively, our experiments reveal that high-fat diet-induced, insulin-dependent PI3K activation in VMH neurons contributes to obesity development.


Asunto(s)
Grasas de la Dieta/efectos adversos , Neuronas/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/metabolismo , Núcleo Hipotalámico Ventromedial/patología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Calorimetría/métodos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Proteínas Fluorescentes Verdes/genética , Hipoglucemiantes/farmacología , Técnicas In Vitro , Inyecciones Intraventriculares/métodos , Insulina/farmacología , Leptina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Factores de Tiempo , Tolbutamida/farmacología , Núcleo Hipotalámico Ventromedial/citología
7.
Cell Metab ; 13(4): 428-439, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21459327

RESUMEN

In Huntington's disease (HD), the mutant huntingtin protein is ubiquitously expressed. The disease was considered to be limited to the basal ganglia, but recent studies have suggested a more widespread pathology involving hypothalamic dysfunction. Here we tested the hypothesis that expression of mutant huntingtin in the hypothalamus causes metabolic abnormalities. First, we showed that bacterial artificial chromosome-mediated transgenic HD (BACHD) mice developed impaired glucose metabolism and pronounced insulin and leptin resistance. Selective hypothalamic expression of a short fragment of mutant huntingtin using adeno-associated viral vectors was sufficient to recapitulate these metabolic disturbances. Finally, selective hypothalamic inactivation of the mutant gene prevented the development of the metabolic phenotype in BACHD mice. Our findings establish a causal link between mutant huntingtin expression in the hypothalamus and metabolic dysfunction, and indicate that metabolic parameters are powerful readouts to assess therapies aimed at correcting dysfunction in HD by silencing huntingtin expression in the brain.


Asunto(s)
Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Hipotálamo/fisiopatología , Resistencia a la Insulina , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Orexinas , Fenotipo
8.
Ann N Y Acad Sci ; 1212: 97-113, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21070248

RESUMEN

The obesity and diabetes pandemics have made it an urgent necessity to define the central nervous system (CNS) pathways controlling body weight, energy expenditure, and fuel metabolism. The pancreatic hormone insulin and the adipose tissue-derived leptin are known to act on diverse neuronal circuits in the CNS to maintain body weight and metabolism in a variety of species, including humans. Because these homeostatic circuits are disrupted during the development of obesity, the pathomechanisms leading to CNS leptin and insulin resistance are a focal point of research. In this review, we summarize the recent findings concerning the mechanisms and novel neuronal mediators of both insulin and leptin action in the CNS.


Asunto(s)
Sistema Nervioso Central/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Insulina/fisiología , Leptina/metabolismo , Animales , Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/genética , Regulación del Apetito/fisiología , Sistema Nervioso Central/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Ingestión de Energía/genética , Ingestión de Energía/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Insulina/metabolismo , Insulina/farmacología , Leptina/genética , Leptina/fisiología , Modelos Biológicos
9.
Aging (Albany NY) ; 2(9): 621-6, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20834068

RESUMEN

Activation of stress-kinase signaling has recently been recognized as an important pathophysiological mechanism in the development of diet-induced obesity, type 2 diabetes mellitus and other aging-related pathologies. Here, c-Jun N-terminal Kinase (JNK) 1 knockout mice have been shown to exhibit protection from diet-induced obesity, glucose intolerance, and insulin resistance. Nonetheless, the tissue-specific role of JNK1-activation in the development of the metabolic syndrome has been poorly defined so far. Recently, it was demonstrated that JNK1 signaling plays a crucial role in the central nervous system (CNS) and in the pituitary to control systemic glucose and lipid metabolism partially through regulation of hormones involved in growth and energy expenditure.


Asunto(s)
Metabolismo Energético/fisiología , Metabolismo de los Lípidos/fisiología , Síndrome Metabólico/fisiopatología , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Animales , Sistema Nervioso Central/fisiología , Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Intolerancia a la Glucosa/prevención & control , Humanos , Insulina/fisiología , Resistencia a la Insulina/fisiología , Ratones , Ratones Noqueados , Modelos Animales , Obesidad/fisiopatología , Obesidad/prevención & control , Transducción de Señal/fisiología
10.
Proc Natl Acad Sci U S A ; 107(13): 6028-33, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231445

RESUMEN

c-Jun N-terminal kinase (JNK) 1-dependent signaling plays a crucial role in the development of obesity-associated insulin resistance. Here we demonstrate that JNK activation not only occurs in peripheral tissues, but also in the hypothalamus and pituitary of obese mice. To resolve the importance of JNK1 signaling in the hypothalamic/pituitary circuitry, we have generated mice with a conditional inactivation of JNK1 in nestin-expressing cells (JNK1(DeltaNES) mice). JNK1(DeltaNES) mice exhibit improved insulin sensitivity both in the CNS and in peripheral tissues, improved glucose metabolism, as well as protection from hepatic steatosis and adipose tissue dysfunction upon high-fat feeding. Moreover, JNK1(DeltaNES) mice also show reduced somatic growth in the presence of reduced circulating growth hormone (GH) and insulin-like growth factor 1 (IGF1) concentrations, as well as increased thyroid axis activity. Collectively, these experiments reveal an unexpected, critical role for hypothalamic/pituitary JNK1 signaling in the coordination of metabolic/endocrine homeostasis.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Hipófisis/metabolismo , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Grasas de la Dieta/administración & dosificación , Hormona del Crecimiento/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Obesos , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Transducción de Señal , Glándula Tiroides/metabolismo
11.
J Biol Chem ; 285(9): 6198-207, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19996103

RESUMEN

The unfolded protein response (UPR) or endoplasmic reticulum (ER) stress response is a physiological process enabling cells to cope with altered protein synthesis demands. However, under conditions of obesity, prolonged activation of the UPR has been shown to have deteriorating effects on different metabolic pathways. Here we identify Bax inhibitor-1 (BI-1), an evolutionary conserved ER-membrane protein, as a novel modulator of the obesity-associated alteration of the UPR. BI-1 partially inhibits the UPR by interacting with IRE1alpha and inhibiting IRE1alpha endonuclease activity as seen on the splicing of the transcription factor Xbp-1. Because we observed a down-regulation of BI-1 expression in liver and muscle of genetically obese ob/ob and db/db mice as well as in mice with diet-induced obesity in vivo, we investigated the effect of restoring BI-1 expression on metabolic processes in these mice. Importantly, BI-1 overexpression by adenoviral gene transfer dramatically improved glucose metabolism in both standard diet-fed mice as well as in mice with diet-induced obesity and, critically, reversed hyperglycemia in db/db mice. This improvement in whole body glucose metabolism and insulin sensitivity was due to dramatically reduced gluconeogenesis as shown by reduction of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase expression. Taken together, these results identify BI-1 as a critical regulator of ER stress responses in the development of obesity-associated insulin resistance and provide proof of concept evidence that gene transfer-mediated elevations in hepatic BI-1 may represent a promising approach for the treatment of type 2 diabetes.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Intolerancia a la Glucosa/terapia , Resistencia a la Insulina , Proteínas de la Membrana/farmacología , Obesidad/complicaciones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Retículo Endoplásmico/patología , Terapia Genética/métodos , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Hiperglucemia/terapia , Hígado/metabolismo , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/uso terapéutico , Ratones , Ratones Obesos , Respuesta de Proteína Desplegada
12.
Cell Metab ; 10(4): 249-59, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19808018

RESUMEN

Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR4 signaling by fatty acids. Here, we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88(DeltaCNS)). Compared to control mice, MyD88(DeltaCNS) mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance, and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dieta , Leptina/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Obesidad/metabolismo , Ácido Palmítico/metabolismo , Transducción de Señal/fisiología , Animales , Grasas de la Dieta/metabolismo , Ingestión de Alimentos , Metabolismo Energético , Activación Enzimática , Femenino , Glucosa/metabolismo , Homeostasis , Humanos , Quinasa I-kappa B/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Factor 88 de Diferenciación Mieloide/genética , Aumento de Peso
13.
J Physiol ; 587(Pt 22): 5305-14, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19770186

RESUMEN

In the wake of the obesity pandemic, increased research efforts are under way to define how peripheral hormones and metabolites regulate energy homeostasis. The melanocortin system, comprising anorexigenic proopiomelanocortin (POMC) expressing neurons and orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) coexpressing neurons in the arcuate nucleus of the hypothalamus are crucial for normal energy homeostasis both in rodents and humans. They are regulated by peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids and fatty acids. Although much progress has been made, recent reports continue to underline how restricted our understanding of POMC and AgRP/NPY neuron regulation by these signals is. Importantly, ATP-dependent potassium (K(ATP)) channels are regulated both by ATP (from glucose metabolism) and by leptin and insulin, and directly control electrical excitability of both POMC and AgRP neurons. Thus, this review attempts to offer an integrative overview about how peripheral signals, particularly leptin, insulin and glucose, converge on a molecular level in POMC and AgRP neurons of the arcuate nucleus of the hypothalamus to control energy homeostasis.


Asunto(s)
Proteína Relacionada con Agouti/fisiología , Glucemia/fisiología , Neuronas/fisiología , Proopiomelanocortina/fisiología , Transducción de Señal/fisiología , Proteína Relacionada con Agouti/biosíntesis , Proteína Relacionada con Agouti/metabolismo , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Humanos , Insulina/fisiología , Leptina/fisiología , Neuronas/metabolismo , Proopiomelanocortina/biosíntesis , Proopiomelanocortina/metabolismo
14.
Cell Metab ; 7(4): 291-301, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18396135

RESUMEN

Insulin- and leptin-stimulated phosphatidylinositol-3 kinase (PI3K) activation has been demonstrated to play a critical role in central control of energy homeostasis. To delineate the importance of pathways downstream of PI3K specifically in pro-opiomelanocortin (POMC) cell regulation, we have generated mice with selective inactivation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in POMC-expressing cells (PDK1(DeltaPOMC) mice). PDK1(DeltaPOMC) mice initially display hyperphagia, increased body weight, and impaired glucose metabolism caused by reduced hypothalamic POMC expression. On the other hand, PDK1(DeltaPOMC) mice exhibit progressive, severe hypocortisolism caused by loss of POMC-expressing corticotrophs in the pituitary. Expression of a dominant-negative mutant of FOXO1 specifically in POMC cells is sufficient to ameliorate positive energy balance in PDK1(DeltaPOMC) mice but cannot restore regular pituitary function. These results reveal important but differential roles for PDK1 signaling in hypothalamic and pituitary POMC cells in the control of energy homeostasis and stress response.


Asunto(s)
Metabolismo Energético , Factores de Transcripción Forkhead/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Estrés Fisiológico , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Peso Corporal/efectos de los fármacos , Corticosterona/metabolismo , Corticosterona/farmacología , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Regulación de la Expresión Génica , Hiperfagia/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Hipófisis/metabolismo , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
15.
J Clin Invest ; 116(7): 1761-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16823473

RESUMEN

Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Animales , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Leptina/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
16.
J Clin Invest ; 116(7): 1886-901, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16794735

RESUMEN

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity. Although leptin potently stimulated Stat3 phosphorylation in POMC neurons of POMC cell-restricted Pten knockout (PPKO) mice, it failed to significantly inhibit food intake in vivo. POMC neurons of PPKO mice showed a marked hyperpolarization and a reduction in basal firing rate due to increased ATP-sensitive potassium (KATP) channel activity. Leptin was not able to elicit electrical activity in PPKO POMC neurons, but application of the PI3K inhibitor LY294002 and the KATP blocker tolbutamide restored electrical activity and leptin-evoked firing of POMC neurons in these mice. Moreover, icv administration of tolbutamide abolished hyperphagia in PPKO mice. These data indicate that PIP3-mediated signals are critical regulators of the melanocortin system via modulation of KATP channels.


Asunto(s)
Neuronas/metabolismo , Obesidad , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canales de Potasio/metabolismo , Proopiomelanocortina/metabolismo , Sistemas de Mensajero Secundario/fisiología , Animales , Cromonas/metabolismo , Dieta , Ingestión de Alimentos/efectos de los fármacos , Femenino , Hipoglucemiantes/farmacología , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Morfolinas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Tolbutamida/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA