Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931009

RESUMEN

The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 in the presence of SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results provide a new understanding of the role of Ded1 during translation.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Partícula de Reconocimiento de Señal , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas
2.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669296

RESUMEN

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Peroxisomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxisomas/metabolismo , Dinámicas Mitocondriales/fisiología , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ciclo del Ácido Cítrico , Potencial de la Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Humanos
3.
Genes (Basel) ; 14(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37628617

RESUMEN

DEAD-box RNA helicases are ATP-dependent RNA binding proteins and RNA-dependent ATPases that possess weak, nonprocessive unwinding activity in vitro, but they can form long-lived complexes on RNAs when the ATPase activity is inhibited. Ded1 is a yeast DEAD-box protein, the functional ortholog of mammalian DDX3, that is considered important for the scanning efficiency of the 48S pre-initiation complex ribosomes to the AUG start codon. We used a modified PAR-CLIP technique, which we call quicktime PAR-CLIP (qtPAR-CLIP), to crosslink Ded1 to 4-thiouridine-incorporated RNAs in vivo using UV light centered at 365 nm. The irradiation conditions are largely benign to the yeast cells and to Ded1, and we are able to obtain a high efficiency of crosslinking under physiological conditions. We find that Ded1 forms crosslinks on the open reading frames of many different mRNAs, but it forms the most extensive interactions on relatively few mRNAs, and particularly on mRNAs encoding certain ribosomal proteins and translation factors. Under glucose-depletion conditions, the crosslinking pattern shifts to mRNAs encoding metabolic and stress-related proteins, which reflects the altered translation. These data are consistent with Ded1 functioning in the regulation of translation elongation, perhaps by pausing or stabilizing the ribosomes through its ATP-dependent binding.


Asunto(s)
Ribosomas , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Ribosomas/genética , Proteínas Ribosómicas , ARN , ARN Mensajero , Proteínas Fúngicas , Proteínas de Choque Térmico , ARN Helicasas DEAD-box/genética , Adenosina Trifosfato/genética , Mamíferos
4.
Methods Mol Biol ; 2602: 191-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36446976

RESUMEN

The ATG8 family of proteins regulates the autophagy process from the autophagosome maturation and cargo recruitment up to degradation. Autophagy dysfunction is involved in the development of multiple diseases. The LC3 interacting region (LIR)-based molecular traps have been designed to isolate endogenous ATG8 proteins and their interactors in order to facilitate the study of selective autophagy events. Here, we summarize protocols describing LC3 traps and sample preparation as well as adaptations for the analysis of ATG8 proteins in different biological models. This protocol was optimized to prepare affinity columns, reduce background, and improve the protein recovery to be analyzed by immunodetection with antibodies recognizing proteins of interest.


Asunto(s)
Aclimatación , Macroautofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Anticuerpos , Autofagia
5.
Sci Rep ; 12(1): 7652, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538106

RESUMEN

Autophagy is an essential cellular pathway that ensures degradation of a wide range of substrates including damaged organelles or large protein aggregates. Understanding how this proteolytic pathway is regulated would increase our comprehension on its role in cellular physiology and contribute to identify biomarkers or potential drug targets to develop more specific treatments for disease in which autophagy is dysregulated. Here, we report the development of molecular traps based in the tandem disposition of LC3-interacting regions (LIR). The estimated affinity of LC3-traps for distinct recombinant LC3/GABARAP proteins is in the low nanomolar range and allows the capture of these proteins from distinct mammalian cell lines, S. cerevisiae and C. elegans. LC3-traps show preferences for GABARAP/LGG1 or LC3/LGG2 and pull-down substrates targeted to proteaphagy and mitophagy. Therefore, LC3-traps are versatile tools that can be adapted to multiple applications to monitor selective autophagy events in distinct physiologic and pathologic circumstances.


Asunto(s)
Caenorhabditis elegans , Macroautofagia , Animales , Autofagia , Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Unión Proteica , Saccharomyces cerevisiae/metabolismo
6.
Biochim Biophys Acta Bioenerg ; 1861(12): 148302, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32861697

RESUMEN

From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Mitofagia , Ubiquitinación
7.
Nat Commun ; 8: 15832, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28607491

RESUMEN

Mitochondrial integrity relies on homotypic fusion between adjacent outer membranes, which is mediated by large GTPases called mitofusins. The regulation of this process remains nonetheless elusive. Here, we report a crosstalk between the ubiquitin protease Ubp2 and the ubiquitin ligases Mdm30 and Rsp5 that modulates mitochondrial fusion. Ubp2 is an antagonist of Rsp5, which promotes synthesis of the fatty acids desaturase Ole1. We show that Ubp2 also counteracts Mdm30-mediated turnover of the yeast mitofusin Fzo1 and that Mdm30 targets Ubp2 for degradation thereby inducing Rsp5-mediated desaturation of fatty acids. Exogenous desaturated fatty acids inhibit Ubp2 degradation resulting in higher levels of Fzo1 and maintenance of efficient mitochondrial fusion. Our results demonstrate that the Mdm30-Ubp2-Rsp5 crosstalk regulates mitochondrial fusion by coordinating an intricate balance between Fzo1 turnover and the status of fatty acids saturation. This pathway may link outer membrane fusion to lipids homeostasis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas F-Box/metabolismo , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas F-Box/genética , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
8.
Autophagy ; 13(1): 114-132, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27846375

RESUMEN

Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Autofagia , Retículo Endoplásmico/metabolismo , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Plásmidos/metabolismo
9.
Nucleic Acids Res ; 42(15): 10005-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25013175

RESUMEN

The DEAD-box helicase Ded1 is an essential yeast protein that is closely related to mammalian DDX3 and to other DEAD-box proteins involved in developmental and cell cycle regulation. Ded1 is considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We used IgG pull-down experiments, mass spectrometry analyses, genetic experiments, sucrose gradients, in situ localizations and enzymatic assays to show that Ded1 is a cap-associated protein that actively shuttles between the cytoplasm and the nucleus. NanoLC-MS/MS analyses of purified complexes show that Ded1 is present in both nuclear and cytoplasmic mRNPs. Ded1 physically interacts with purified components of the nuclear CBC and the cytoplasmic eIF4F complexes, and its enzymatic activity is stimulated by these factors. In addition, we show that Ded1 is genetically linked to these factors. Ded1 comigrates with these proteins on sucrose gradients, but treatment with rapamycin does not appreciably alter the distribution of Ded1; thus, most of the Ded1 is in stable mRNP complexes. We conclude that Ded1 is an mRNP cofactor of the cap complex that may function to remodel the different mRNPs and thereby regulate the expression of the mRNAs.


Asunto(s)
Núcleo Celular/enzimología , Citoplasma/enzimología , ARN Helicasas DEAD-box/metabolismo , Caperuzas de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Biosíntesis de Proteínas , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Biol Cell ; 22(12): 2054-67, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21490148

RESUMEN

In the yeast Saccharomyces cerevisiae, glutathione plays a major role in heavy metal detoxification and protection of cells against oxidative stress. We show that Gex1 is a new glutathione exchanger. Gex1 and its paralogue Gex2 belong to the major facilitator superfamily of transporters and display similarities to the Aft1-regulon family of siderophore transporters. Gex1 was found mostly at the vacuolar membrane and, to a lesser extent, at the plasma membrane. Gex1 expression was induced under conditions of iron depletion and was principally dependent on the iron-responsive transcription factor Aft2. However, a gex1Δ gex2Δ strain displayed no defect in known siderophore uptake. The deletion mutant accumulated intracellular glutathione, and cells overproducing Gex1 had low intracellular glutathione contents, with glutathione excreted into the extracellular medium. Furthermore, the strain overproducing Gex1 induced acidification of the cytosol, confirming the involvement of Gex1 in proton transport as a probable glutathione/proton antiporter. Finally, the imbalance of pH and glutathione homeostasis in the gex1Δ gex2Δ and Gex1-overproducing strains led to modulations of the cAMP/protein kinase A and protein kinase C1 mitogen-activated protein kinase signaling pathways.


Asunto(s)
Antiportadores/metabolismo , Glutatión/metabolismo , Homeostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiportadores/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cadmio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Deficiencias de Hierro , Sistema de Señalización de MAP Quinasas , Oxidación-Reducción , Proteína Quinasa C/metabolismo , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
11.
FEBS Open Bio ; 1: 23-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23650572

RESUMEN

Erwinia amylovora is responsible for fire blight, a necrotic disease of apples and pears. E. amylovora relies on a type III secretion system (T3SS) to induce disease on host plants. DspA/E belongs to the AvrE family of type III effector. Effectors of the AvrE family are injected via the T3SS in plant cell and are important to promote bacterial growth following infection and to suppress plant defense responses. Their mode of action in the plant cells is unknown. Here we study the physiological effects induced by dspA/E expression in the yeast Saccharomyces cerevisiae. Expression of dspA/E in the yeast inhibits cell growth. This growth inhibition is associated with perturbations of the actin cytoskeleton and endocytosis.

12.
Biochem Soc Trans ; 36(Pt 5): 791-6, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18793138

RESUMEN

The ubiquitin ligase (E3) Rsp5p is the only member of the Nedd (neural-precursor-cell-expressed, developmentally down-regulated) 4 family of E3s present in yeast. Rsp5p has several proteasome-independent functions in membrane protein trafficking, including a role in the ubiquitination of most plasma membrane proteins, leading to their endocytosis. Rsp5p is also required for the ubiquitination of endosomal proteins, leading to their sorting to the internal vesicles of MVBs (multivesicular bodies). Rsp5p catalyses the attachment of non-conventional ubiquitin chains, linked through ubiquitin Lys-63, to some endocytic and MVB cargoes. This modification appears to be required for efficient sorting, possibly because these chains have a greater affinity for the ubiquitin-binding domains present within endocytic or MVB sorting complexes. The mechanisms involved in the recognition of plasma membrane and MVB substrates by Rsp5p remain unclear. A subset of Rsp5/Nedd4 substrates have a 'PY motif' and are recognized directly by the WW (Trp-Trp) domains of Rsp5p. Most Rsp5p substrates do not carry PY motifs, but some may depend on PY-containing proteins for their ubiquitination by Rsp5p, consistent with the latter's acting as specificity factors or adaptors. As in other ubiquitin-conjugating systems, these adaptors are also Rsp5p substrates and undergo ubiquitin-dependent trafficking. In the present review, we discuss recent examples illustrating the role of Rsp5p in membrane protein trafficking and providing new insights into the regulation of this E3 by adaptor proteins.


Asunto(s)
Transporte Biológico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo
13.
Traffic ; 9(8): 1372-91, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18489705

RESUMEN

Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Sideróforos/metabolismo , Ubiquitina/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
14.
Traffic ; 8(11): 1601-16, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17714436

RESUMEN

We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.


Asunto(s)
Deferoxamina/química , Compuestos Férricos/química , Sideróforos/metabolismo , Transporte Biológico , Candida albicans/metabolismo , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Concentración 50 Inhibidora , Hierro/química , Cinética , Mitocondrias/metabolismo , Modelos Químicos , Transporte de Proteínas , Protoporfirinógeno-Oxidasa/química , Saccharomyces cerevisiae/metabolismo , Sideróforos/química , Especificidad por Sustrato
15.
J Biol Chem ; 282(39): 28834-28842, 2007 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17640864

RESUMEN

Guanine nucleotide exchange factors carrying a Sec7 domain (ArfGEFs) activate the small GTP-binding protein Arf, a major regulator of membrane remodeling and protein trafficking in eukaryotic cells. Only two of the seven subfamilies of ArfGEFs (GBF and BIG) are found in all eukaryotes. In addition to the Sec7 domain, which catalyzes GDP/GTP exchange on Arf, the GBF and BIG ArfGEFs have five common homology domains. Very little is known about the functions of these noncatalytic domains, but it is likely that they serve to integrate upstream signals that define the conditions of Arf activation. Here we describe interactions between two conserved domains upstream of the Sec7 domain (DCB and HUS) that determine the architecture of the N-terminal regions of the GBF and BIG ArfGEFs using a combination of biochemical, yeast two-hybrid, and cellular assays. Our data demonstrate a strong interaction between DCB domains within GBF1, BIG1, and BIG2 to maintain homodimers and an interaction between DCB and HUS domains within each homodimer. The DCB/HUS interaction is mediated by the HUS box, the most conserved motif in large ArfGEFs after the Sec7 domain. In support of the in vitro data, we show that both the DCB and the HUS domains are necessary for GBF1 dimerization in mammalian cells and that the DCB domain is essential for yeast viability. We propose that the dimeric DCB-HUS structural unit exists in all members of the GBF and BIG ArfGEF groups and in the related Mon2p family and probably serves an important regulatory role in Arf activation.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Factores de Ribosilacion-ADP/genética , Secuencias de Aminoácidos/fisiología , Animales , Células COS , Chlorocebus aethiops , Dimerización , Activación Enzimática/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
16.
Biotechnol J ; 1(3): 308-20, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16897711

RESUMEN

Plasma membrane proteins involved in transport processes play a crucial role in cell physiology. On account of these properties, these molecules are ideal targets for development of new therapeutic and agronomic agents. However, these proteins are of low abundance, which limits their study. Although yeast seems ideal for expressing heterologous transporters, plasma membrane proteins are often retained in intracellular compartments. We tried to find yeast mutants potentially able to improve functional expression of a whole set of heterologous transporters. We focused on Arabidopsis thaliana ureide transporter 1 (AtUPS1), previously cloned by functional complementation in yeast. Tagged versions of AtUPS1 remain mostly trapped in the endoplasmic reticulum and were able to reach slowly the plasma membrane. In contrast, untagged AtUPS1 is rapidly delivered to plasma membrane, where it remains in stable form. Tagged and untagged versions of AtUPS1 were expressed in cells deficient in the ubiquitin ligase Rsp5p, involved in various stages of the intracellular trafficking of membrane-bound proteins. rsp5 mutants displayed improved steady state amounts of untagged and tagged versions of AtUPS1. rsp5 cells are thus powerful tools to solve the many problems inherent to heterologous expression of membrane proteins in yeast, including ER retention.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Membrana Celular/metabolismo , Clonación Molecular/métodos , Mejoramiento Genético/métodos , Proteínas de Transporte de Membrana/biosíntesis , Ingeniería de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Arabidopsis/genética , Sistemas de Liberación de Medicamentos/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/genética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
17.
Traffic ; 4(9): 607-17, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12911815

RESUMEN

We screened for genes potentially involved in the secretory and vacuolar pathways a collection of 61 yeast strains, each bearing an essential orphan gene regulated by the tetO7-CYC1 promoter that can be down-regulated by doxycycline. After down-regulating the expression of these genes, we performed systematic Western blot analysis for markers of the secretory and vacuolar pathways that undergo post-translational modifications in their intracellular trafficking. Accumulation of protein precursors, revealed by Western immunoblot analysis, indicates defects in the secretory pathway or in associated biochemical modifications. After screening the whole collection, we identified two genes involved in ER to Golgi trafficking: RER2, a cis-prenyl transferase, and USE1, the function of which was unknown. We demonstrated that repression of USE1 also leads to BiP secretion, and therefore likely affects retrograde, in addition to anterograde, ER to Golgi trafficking. The collection also includes two essential genes involved in intracellular trafficking that were conveniently repressed without resulting growth or trafficking defects.


Asunto(s)
Dimetilaliltranstransferasa/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Transferasas/fisiología , Transporte Biológico , Dimetilaliltranstransferasa/genética , Regulación hacia Abajo , Retículo Endoplásmico/ultraestructura , Genes Fúngicos , Proteínas de la Membrana/genética , Proteínas Qc-SNARE , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transferasas/genética
18.
Mol Biol Cell ; 13(5): 1694-708, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12006663

RESUMEN

The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.


Asunto(s)
Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Carboxipeptidasas/biosíntesis , Carboxipeptidasas/metabolismo , Proteínas Portadoras/genética , Catepsina A , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Isoquinolinas/metabolismo , Proteínas de la Membrana/metabolismo , Familia de Multigenes , Mutación , Proteínas de Transporte de Nucleótidos/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Uracilo/metabolismo , Proteínas de Transporte Vesicular
19.
Yeast ; 19(4): 351-71, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11870858

RESUMEN

We have screened the EUROFAN (European Functional Analysis Network) deletion strain collection for yeast mutants defective in secretory/vacuolar pathways and/or associated biochemical modifications. We used systematic Western immunoblotting to analyse the electrophoretic pattern of several markers of the secretory/vacuolar pathways, the soluble alpha-factor, the periplasmic glycoprotein invertase, the plasma membrane GPI-anchored protein Gas1p, and two vacuolar proteins, the soluble carboxypeptidase Y and the membrane-bound alkaline phosphatase, which are targeted to the vacuole by different pathways. We also used colony immunoblotting to monitor the secretion of carboxypeptidase Y into the medium, to identify disruptants impaired in vacuolar targeting. We identified 25 mutants among the 631 deletion strains. Nine of these mutants were disrupted in genes identified in recent years on the basis of their involvement in trafficking (VPS53, VAC7, VAM6, APM3, SYS1), or glycosylation (ALG12, ALG9, OST4, ROT2). Three of these genes were identified on the basis of trafficking defects by ourselves and others within the EUROFAN project (TLG2, RCY1, MON2). The deletion of ERV29, which encodes a COPII vesicle protein, impaired carboxypeptidase Y trafficking from the endoplasmic reticulum to the Golgi apparatus. We also identified eight unknown ORFs, the deletion of which reduced Golgi glycosylation or impaired the Golgi to vacuole trafficking of carboxypeptidase Y. YJR044c, which we identified as a new VPS gene, encodes a protein with numerous homologues of unknown function in sequence databases.


Asunto(s)
Proteínas Fúngicas/metabolismo , Vacuolas/metabolismo , Levaduras/genética , Levaduras/metabolismo , Fosfatasa Alcalina/metabolismo , Transporte Biológico , Western Blotting , Carboxipeptidasas/metabolismo , Catepsina A , Electroforesis , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/análisis , Glicosilación , Aparato de Golgi/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...