Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2118819119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394877

RESUMEN

In idiopathic Parkinson's disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Enfermedad de Parkinson , Sinucleinopatías , Animales , Neuronas Dopaminérgicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Sinucleinopatías/genética
2.
Drug Deliv ; 29(1): 386-398, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35075948

RESUMEN

The potential of nucleic acid therapeutics to treat diseases by targeting specific cells has resulted in its increasing number of uses in clinical settings. However, the major challenge is to deliver bio-macromolecules into target cells and/or subcellular locations of interest ahead in the development of delivery systems. Although, supercharged residues replaced protein 36 + GFP can facilitate itself and cargoes delivery, its efficiency is still limited. Therefore, we combined our recent progress to further improve 36 + GFP based delivery efficiency. We found that the penetration efficacy of 36 + GFP protein was significantly improved by fusion with CPP-Dot1l or treatment with penetration enhancer dimethyl sulfoxide (DMSO) in vitro. After safely packaged with plasmid DNA, we found that the efficacy of in vitro and in vivo transfection mediated by 36 + GFP-Dot1l fusion protein is also significantly improved than 36 + GFP itself. Our findings illustrated that fusion with CPP-Dot1l or incubation with DMSO is an alternative way to synergically promote 36 + GFP mediated plasmid DNA delivery in vitro and in vivo.


Asunto(s)
Péptidos de Penetración Celular/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Proteínas Fluorescentes Verdes/farmacocinética , N-Metiltransferasa de Histona-Lisina/farmacocinética , Ácidos Nucleicos/administración & dosificación , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/química , Proteínas Fluorescentes Verdes/química , Hemólisis/efectos de los fármacos , Humanos , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Transfección/métodos
3.
J Control Release ; 341: 166-183, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822907

RESUMEN

The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.


Asunto(s)
Péptidos de Penetración Celular , Ácidos Nucleicos , Edición Génica , ARN Interferente Pequeño , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA