Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 50: 15-30, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29429514

RESUMEN

Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Fenómenos Biofísicos , Técnicas de Cultivo de Célula/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Células Tumorales Cultivadas/ultraestructura , Células A549 , Adenocarcinoma/química , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Docetaxel , Ensayo de Inmunoadsorción Enzimática , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patología , Microscopía Confocal , Especificidad por Sustrato , Taxoides/farmacología , Células Tumorales Cultivadas/química , Células Tumorales Cultivadas/efectos de los fármacos
2.
Nanomaterials (Basel) ; 7(10)2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28973987

RESUMEN

The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO3) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

3.
Nanoscale ; 8(42): 18170-18179, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27740658

RESUMEN

A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a ∼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ∼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of ∼1.7 the competing quenching by the array, with an array emission factor of ∼0.7, results in only an overall gain of ∼14% in the QD emission. The QD emission was enhanced by ∼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of ∼1.4.

4.
Toxicol Sci ; 150(1): 40-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26612840

RESUMEN

Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require that production methods of additives are indicated on the product label, and, thus, the ASNP are listed without mentioning the production method. Recent results indicate, however, that pyrogenic ASNP are more cytotoxic than ASNP synthesized through the wet route. The present study was aimed at clarifying if 2 representative preparations of ASNP, NM-203 (pyrogenic) and NM-200 (precipitated), of comparable size, specific surface area, surface charge, and hydrodynamic radius in complete growth medium, had different effects on 2 murine macrophage cell lines (MH-S and RAW264.7 cells). Our results show that, when incubated in protein-rich fluids, NM-203 adsorbed on their surface more proteins than NM-200 and, once incubated with macrophages, elicited a greater oxidative stress, assessed from Hmox1 induction and ROS production. Flow cytometry and helium ion microscopy indicated that pyrogenic NM-203 interacted with macrophages more strongly than the precipitated NM-200 and triggered a more evident inflammatory response, evaluated with Nos2 induction, NO production and the secretion of TNF-α, IL-6 and IL-1ß. Moreover, both ASNP synergized macrophage activation by bacterial lipopolysaccharide (LPS), with a higher effect observed for NM-203. In conclusion, the results presented here demonstrate that, compared to precipitated, pyrogenic ASNP exhibit enhanced interaction with serum proteins and cell membrane, and cause a larger oxidative stress and stronger proinflammatory effects in macrophages. Therefore, these 2 nanomaterials should not be considered biologically equivalent.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Técnicas de Cultivo de Célula , Línea Celular , Precipitación Química , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Macrófagos Alveolares/inmunología , Ratones , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/metabolismo , Nanotecnología/métodos , Óxido Nítrico/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Propiedades de Superficie
5.
ACS Appl Mater Interfaces ; 7(31): 17238-46, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26192984

RESUMEN

Poly(ether sulfone) membranes (PES) were modified with biologically active monosaccharides and disaccharides using aryldiazonium chemistry as a mild, one-step, surface-modification strategy. We previously proposed the modification of carbon, metals, and alloys with monosaccharides using the same method; herein, we demonstrate modification of PES membranes and the effect of chemisorbed carbohydrate layers on their resistance to biofouling. Glycosylated PES surfaces were characterized using spectroscopic methods and tested against their ability to interact with specific carbohydrate-binding proteins. Galactose-, mannose-, and lactose-modified PES surfaces were exposed to Bovine Serum Albumin (BSA) solutions to assess unspecific protein adsorption in the laboratory and were found to adsorb significantly lower amounts of BSA compared to bare membranes. The ability of molecular carbohydrate layers to impart antifouling properties was further tested in the field via long-term immersive tests at a wastewater treatment plant. A combination of ATP content assays, infrared spectroscopic characterization and He-ion microscopy (HIM) imaging were used to investigate biomass accumulation at membranes. We show that, beyond laboratory applications and in the case of complex aqueous environments that are rich in biomass such as wastewater effluent, we observe significantly lower biofouling at carbohydrate-modified PES than at bare PES membrane surfaces.

6.
ACS Nano ; 9(5): 5551-8, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25938797

RESUMEN

In this article, we present a comprehensive investigation of the photothermal properties of plasmonic nanowire networks. We measure the local steady-state temperature increase, heat source density, and absorption in Ag, Au, and Ni metallic nanowire networks under optical illumination. This allows direct experimental confirmation of increased heat generation at the junction between two metallic nanowires and stacking-dependent absorption of polarized light. Due to thermal collective effects, the local temperature distribution in a network is shown to be completely delocalized on a micrometer scale, despite the nanoscale features in the heat source density. Comparison of the experimental temperature profile with numerical simulation allows an upper limit for the effective thermal conductivity of a Ag nanowire network to be established at 43 Wm(-1) K(-1) (0.1 κbulk).

7.
Nanoscale ; 7(10): 4443-50, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25679478

RESUMEN

In this work we have used melt-processing to mix liquid-exfoliated boron-nitride nanosheets with PET to produce composites for gas barrier applications. Sonication of h-BN powder, followed by centrifugation-based size-selection, was used to prepare suspensions of nanosheets with aspect ratio >1000. The solvent was removed to give a weakly aggregated powder which could easily be mixed into PET, giving a composite containing well-dispersed nanosheets. These composites showed very good barrier performance with oxygen permeability reductions of 42% by adding just 0.017 vol% nanosheets. At low loading levels the composites were almost completely transparent. At higher loading levels, while some haze was introduced, the permeability fell by ∼70% on addition of 3 vol% nanosheets.

8.
J Am Chem Soc ; 137(5): 1983-92, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25590898

RESUMEN

Herein we present the use of lanthanide directed self-assembly formation (Ln(III) = Eu(III), Tb(III)) in the generation of luminescent supramolecular polymers, that when swelled with methanol give rise to self-healing supramolecular gels. These were analyzed by using luminescent and (1)H NMR titrations studies, allowing for the identification of the various species involved in the subsequent Ln(III)-gel formation. These highly luminescent gels could be mixed to give a variety of luminescent colors depending on their Eu(III):Tb(III) stoichiometric ratios. Imaging and rheological studies showed that these gels prepared using only Eu(III) or only Tb(III) have different morphological and rheological properties, that are also different from those determined upon forming gels by mixing of Eu(III) and Tb(III) gels. Hence, our results demonstrate for the first time the crucial role the lanthanide ions play in the supramolecular polymerization process, which is in principle a host-guest interaction, and consequently in the self-healing properties of the corresponding gels, which are dictated by the same host-guest interactions.


Asunto(s)
Europio/química , Sustancias Luminiscentes/química , Compuestos Organometálicos/química , Reología , Terbio/química , Geles
9.
Nanoscale ; 6(9): 4889-95, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24671118

RESUMEN

We have used liquid exfoliation of hexagonal Boron-Nitride (BN) to prepare composites of BN nanosheets of three different sizes in polyvinylchloride matrices. These composites show low levels of reinforcement, consistent with poor alignment of the nanosheets as-described by a modified version of Halpin-Tsai theory. However, drawing of the composites to 300% strain results in a considerable increase in mechanical properties with the maximum composite modulus and strength both ∼×3 higher than that of the pristine polymer. In addition, the rate of increase of modulus with BN volume fraction was up to 3-fold larger than for the unstrained composites. This is higher than can be explained by drawing-induced alignment using Halpin-Tsai theory. However, the data was consistent with a combination of alignment and strain-induced de-aggregation of BN multilayers.

10.
Biomaterials ; 35(9): 2543-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24429386

RESUMEN

Gold nanomaterials are currently raising a significant interest for human welfare in the field of clinical diagnosis, therapeutics for chronic pathologies, as well as of many other biomedical applications. In particular, gold nanomaterials are becoming a promising technology for developing novel approaches and treatments against widespread societal diseases such as cancer. In this study, we investigated the potential of proprietary gold nanoboxes (AuNBs) as carriers for their perspective translation into multifunctional, pre-clinical nano-enabled systems for personalized medicine approaches against lung cancer. A safe-by-design, tiered approach, with systematic tests conducted in the early phases on uncoated AuNBs and more focused testing on the coated, drug-loaded nanomaterial toward the end, was adopted. Our results showed that uncoated AuNBs could effectively penetrate into human lung adenocarcinoma (A549) cells when in simple (mono-cultures) or complex (co- and three-dimensional-cultures) in vitro microenvironments mimicking the alveolar region of human lungs. Uncoated AuNBs were biologically inert in A549 cells and demonstrated signs of biodegradability. Concurrently, preliminary data revealed that coated, drug-loaded AuNBs could efficiently deliver a chemotherapeutic agent to A549 cells, corroborating the hypothesis that AuNBs could be used in the future for the development of personalized nano-enabled systems for lung cancer treatment.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Oro/química , Nanoestructuras/química , Neoplasias/metabolismo , Materiales Biocompatibles/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Gelatina/química , Oro/toxicidad , Humanos , Nanoestructuras/toxicidad , Nanoestructuras/ultraestructura , Neoplasias/patología , Neoplasias/ultraestructura , Factores de Tiempo
11.
Dalton Trans ; 43(1): 196-209, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24149846

RESUMEN

2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) is a terdentate binding motif that is synthesised modularly via the CuAAC reaction. Herein, we present the synthesis of ligands 1 and 2 and the investigation of the coordination chemistry, photophysical behaviour and electrochemistry of complexes of these with a number of d-metal ions (e.g. Ru(II), Ir(III), Ni(II) and Pt(II)). The X-ray crystal structures of ligand 1 and the complexes [Ru·2(2)](PF6)Cl, [Ni·1(2)](PF6)Cl and [Ir·1Cl3] are also presented. All of the complexes displayed non-classical triazolyl C-H···Cl(-) hydrogen bonding. All but one complex showed no metal-based luminescence at room temperature, while all of the Pt(ii) complexes displayed luminescence at 77 K. The electrochemistry of the Ru(II) complexes was also studied and these complexes were found to have higher oxidation potentials than analogous compounds. The redox behaviour of [RuL2](2+) complexes with both 1 and 2 was nearly identical, while [Ru·1Cl2(DMSO)] was oxidised at significantly lower potential. We also show that the Ru(II) complex of 2, [Ru·2(2)](PF6)Cl, gave rise to the formation of a metallo-supramolecular gel, the morphology of which was studied using scanning electron and helium ion microscopy.


Asunto(s)
Complejos de Coordinación/química , Geles/química , Piridinas/química , Triazoles/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Iridio/química , Ligandos , Luminiscencia , Modelos Moleculares , Níquel/química , Oxidación-Reducción , Platino (Metal)/química , Rutenio/química
12.
Nanoscale ; 5(2): 581-7, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23203296

RESUMEN

We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ∼1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σ(B), of these composites to increase linearly with volume fraction, V(f), up to V(f)∼ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dV(f) = 670 GPa and dσ(B)/dV(f) = 47 GPa. The former value matches theory based on continuum mechanics while the latter value is consistent with remarkably high polymer-filler interfacial strength. However, because the mechanical properties increase over such a narrow volume fraction range, the maximum values of both modulus and strength are only ∼40% higher than the pure polymer. This phenomenon has also been observed for graphene-filled composites and represents a serious hurdle to the production of high performance polymer-nanosheet composites.

13.
Nanotechnology ; 23(43): 435604, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23059600

RESUMEN

Single crystal iron nanocubes are produced by simply heating a bilayer film. This surface energy driven growth (SEDG) method exploits the difference in surface energies of the components (γ(Fe) ~ 2.2 J m(-2) versus γ(Nd) ~ 0.7 J m(-2)) in the binary alloy Fe-Nd system to produce nanocubes of the higher energy Fe component. The dimensions of the cubes range from tens to hundreds of nanometers in size and can be controlled by changing the initial thickness of iron in the deposited Fe-Nd bilayer prior to annealing at 700 °C. The composition and structure of the nanocubes was confirmed by transmission electron microscopy analysis as single crystal bcc iron in the α-phase. The cubes were found to exist as core-shell structures with the α-phase encased by an intermetallic Fe-Nd phase, characteristic of the SEDG growth mechanism.

14.
Nano Lett ; 12(11): 5966-71, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23062152

RESUMEN

Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.


Asunto(s)
Nanopartículas del Metal/química , Metales/química , Nanotecnología/métodos , Nanocables/química , Conductividad Eléctrica , Electricidad , Humanos , Luz , Campos Magnéticos , Ensayo de Materiales , Modelos Estadísticos , Electricidad Estática , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...