Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(11): 2071-2085, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34699744

RESUMEN

Genome-wide association studies (GWASs) of prostate cancer have identified >250 significant risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we sought to identify and characterize risk-harboring regulatory elements by integrating epigenomes from primary prostate tumor and normal tissues of 27 individuals across the H3K27ac, H3K4me3, and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. We identified 7,371 peaks with significant allele specificity (allele-specific quantitative trait locus [asQTL] peaks). Showcasing their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most enriched for prostate cancer GWAS heritability (40×), significantly higher than corresponding non-asQTL H3K27ac peaks (14×) or coding regions (14×). Surprisingly, fine-mapped GWAS risk variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL peaks that were differentially imbalanced with respect to tumor-normal states. These data pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where some germline variants become reactivated during or after transformation and can be captured by epigenomic profiling of the tumor. Our study demonstrates the power of allele specificity in chromatin signals to uncover GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer risk, and prioritizes multiple loci for experimental follow-up.


Asunto(s)
Alelos , Epigénesis Genética , Predisposición Genética a la Enfermedad , Próstata/metabolismo , Neoplasias de la Próstata/genética , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Sitios de Carácter Cuantitativo
2.
Nat Genet ; 52(8): 790-799, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690948

RESUMEN

Epigenetic processes govern prostate cancer (PCa) biology, as evidenced by the dependency of PCa cells on the androgen receptor (AR), a prostate master transcription factor. We generated 268 epigenomic datasets spanning two state transitions-from normal prostate epithelium to localized PCa to metastases-in specimens derived from human tissue. We discovered that reprogrammed AR sites in metastatic PCa are not created de novo; rather, they are prepopulated by the transcription factors FOXA1 and HOXB13 in normal prostate epithelium. Reprogrammed regulatory elements commissioned in metastatic disease hijack latent developmental programs, accessing sites that are implicated in prostate organogenesis. Analysis of reactivated regulatory elements enabled the identification and functional validation of previously unknown metastasis-specific enhancers at HOXB13, FOXA1 and NKX3-1. Finally, we observed that prostate lineage-specific regulatory elements were strongly associated with PCa risk heritability and somatic mutation density. Examining prostate biology through an epigenomic lens is fundamental for understanding the mechanisms underlying tumor progression.


Asunto(s)
Neoplasias de la Próstata/genética , Línea Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...