Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(37): 44521-44532, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695080

RESUMEN

Pandemics stress supply lines and generate shortages of personal protective equipment (PPE), in part because most PPE is single-use and disposable, resulting in a need for constant replenishment to cope with high-volume usage. To better prepare for the next pandemic and to reduce waste associated with disposable PPE, we present a composite textile material capable of thermally decontaminating its surface via Joule heating. This material can achieve high surface temperatures (>100 °C) and inactivate viruses quickly (<5 s of heating), as evidenced experimentally with the surrogate virus HCoV-OC43 and in agreement with analytical modeling for both HCoV-OC43 and SARS-CoV-2. Furthermore, it does not require doffing because it remains relatively cool near the skin (<40 °C). The material can be easily integrated into clothing and provides a rapid, reusable, in situ decontamination method capable of reducing PPE waste and mitigating the risk of supply line disruptions in times of need.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , Humanos , COVID-19/prevención & control , Descontaminación , SARS-CoV-2 , Textiles
2.
Sci Adv ; 8(34): eabo2418, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001663

RESUMEN

Wearable assistive, rehabilitative, and augmentative devices currently require bulky power supplies, often making these tools more of a burden than an asset. This work introduces a soft, low-profile, textile-based pneumatic energy harvesting system that extracts power directly from the foot strike of a user during walking. Energy is harvested with a textile pump integrated into the insole of the user's shoe and stored in a wearable textile bladder to operate pneumatic actuators on demand, with system performance optimized based on a mechano-fluidic model. The system recovered a maximum average power of nearly 3 W with over 20% conversion efficiency-outperforming electromagnetic, piezoelectric, and triboelectric alternatives-and was used to power a wearable arm-lift device that assists shoulder motion and a supernumerary robotic arm, demonstrating its capability as a lightweight, low-cost, and comfortable solution to support adults with upper body functional limitations in activities of daily living.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...