Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mamm Genome ; 34(3): 464-472, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37041421

RESUMEN

Congenital idiopathic megaesophagus (CIM) is a gastrointestinal disorder of dogs wherein the esophagus is dilated and swallowing activity is reduced, causing regurgitation of ingesta. Affected individuals experience weight loss and malnourishment and are at risk for aspiration pneumonia, intussusception, and euthanasia. Great Danes have among the highest incidences of CIM across dog breeds, suggesting a genetic predisposition. We generated low-pass sequencing data for 83 Great Danes and used variant calls to impute missing whole genome single-nucleotide variants (SNVs) for each individual based on haplotypes phased from 624 high-coverage dog genomes, including 21 Great Danes. We validated the utility of our imputed data set for genome-wide association studies (GWASs) by mapping loci known to underlie coat phenotypes with simple and complex inheritance patterns. We conducted a GWAS for CIM with 2,010,300 SNVs, identifying a novel locus on canine chromosome 1 (P-val = 2.76 × 10-10). Associated SNVs are intergenic or intronic and are found in two clusters across a 1.7-Mb region. Inspection of coding regions in high-coverage genomes from affected Great Danes did not reveal candidate causal variants, suggesting that regulatory variants underlie CIM. Further studies are necessary to assess the role of these non-coding variants.


Asunto(s)
Acalasia del Esófago , Estudio de Asociación del Genoma Completo , Animales , Perros , Acalasia del Esófago/genética , Acalasia del Esófago/veterinaria , Genoma/genética , Predisposición Genética a la Enfermedad , Fenotipo , Polimorfismo de Nucleótido Simple
2.
PLoS Genet ; 18(3): e1010044, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271580

RESUMEN

Congenital idiopathic megaesophagus (CIM) is a gastrointestinal (GI) motility disorder of dogs in which reduced peristaltic activity and dilation of the esophagus prevent the normal transport of food into the stomach. Affected puppies regurgitate meals and water, fail to thrive, and experience complications such as aspiration pneumonia that may necessitate euthanasia. The German shepherd dog (GSD) has the highest disease incidence, indicative of a genetic predisposition. Here, we discover that male GSDs are twice as likely to be affected as females and show that the sex bias is independent of body size. We propose that female endogenous factors (e.g., estrogen) are protective via their role in promoting relaxation of the sphincter between the esophagus and stomach, facilitating food passage. A genome-wide association study for CIM revealed an association on canine chromosome 12 (P-val = 3.12x10-13), with the lead SNPs located upstream or within Melanin-Concentrating Hormone Receptor 2 (MCHR2), a compelling positional candidate gene having a role in appetite, weight, and GI motility. Within the first intron of MCHR2, we identified a 33 bp variable number tandem repeat (VNTR) containing a consensus binding sequence for the T-box family of transcription factors. Across dogs and wolves, the major allele includes two copies of the repeat, whereas the predominant alleles in GSDs have one or three copies. The single-copy allele is strongly associated with CIM (P-val = 1.32x10-17), with homozygosity for this allele posing the most significant risk. Our findings suggest that the number of T-box protein binding motifs may correlate with MCHR2 expression and that an imbalance of melanin-concentrating hormone plays a role in CIM. We describe herein the first genetic factors identified in CIM: sex and a major locus on chromosome 12, which together predict disease state in the GSD with greater than 75% accuracy.


Asunto(s)
Acalasia del Esófago , Repeticiones de Minisatélite , Animales , Perros , Acalasia del Esófago/veterinaria , Femenino , Estudio de Asociación del Genoma Completo , Intrones/genética , Masculino , Receptores de la Hormona Hipofisaria
3.
Cardiovasc Eng Technol ; 8(1): 30-40, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995570

RESUMEN

Infants and children born with severe cardiac valve lesions have no effective long term treatment options since currently available tissue or mechanical prosthetic valves have sizing limitations and no avenue to accommodate the growth of the pediatric patient. Tissue engineered heart valves (TEHVs) which could provide for growth, self-repair, infection resistance, and long-term replacement could be an ideal solution. Porcine small intestinal submucosa (PSIS) has recently emerged as a potentially attractive bioscaffold for TEHVs. PSIS may possess the ability to recruit endogenous cardiovascular cells, leading to phenotypically-matched replacement tissue when the scaffold has completely degraded. Our group has successfully implanted custom-made PSIS valves in 4 infants with critical valve defects in whom standard bioprosthetic or mechanical valves were not an option. Short term clinical follow-up has been promising. However, no hydrodynamic data has been reported to date on these valves. The purpose of this study was to assess the functional effectiveness of tri-leaflet PSIS bioscaffolds in the aortic position compared to standard tri-leaflet porcine bioprosthetic valves. Hydrodynamic evaluation of acute PSIS function was conducted using a left heart simulator in our laboratory. Our results demonstrated similar flow and pressure profiles (p > 0.05) between the PSIS valves and the control valves. However, forward flow energy losses were found to be significantly greater (p < 0.05) in the PSIS valves compared to the controls possibly as a result of stiffer material properties of PSIS relative to glutaraldehyde-fixed porcine valve tissue. Our findings suggest that optimization of valve dimensions and shape may be important in accelerating de novo valve tissue growth and avoidance of long-term complications associated with higher energy losses (e.g. left ventricular hypertrophy). Furthermore, long term animal and clinical studies will be needed in order to conclusively address somatic growth potential of PSIS valves.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Modelos Cardiovasculares , Ingeniería de Tejidos/métodos , Animales , Válvula Aórtica , Hemodinámica , Hidrodinámica , Mucosa Intestinal , Sus scrofa , Fijación del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA