Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38659740

RESUMEN

Epidemiological investigations have indicated that insufficient sleep is prevalent among adolescents, posing a globally underestimated health risk. Sleep fragmentation and sleep loss during adolescence have been linked to concurrent emotional dysregulation and an increase in impulsive, risk-taking behaviors, including a higher likelihood of substance abuse. Among the most widely used substances, alcohol stands as the primary risk factor for deaths and disability among individuals aged 15-49 worldwide. While the association between sleep loss and alcohol consumption during adolescence is well documented, the extent to which prior exposure to sleep loss in adolescence contributes to heightened alcohol use later in adulthood remains less clearly delineated. Here, we analyzed longitudinal epidemiological data spanning 9 years, from adolescence to adulthood, including 5497 participants of the Avon Longitudinal Study of Parents And Children cohort. Sleep and alcohol measures collected from interviews and questionnaires at 15 and 24 years of age were analyzed with multivariable linear regression and a cross-lagged autoregressive path model. Additionally, we employed a controlled preclinical experimental setting to investigate the causal relationship underlying the associations found in the human study and to assess comorbid behavioral alterations. Preclinical data were collected by sleep restricting Marchigian Sardinian alcohol preferring rats (msP, n=40) during adolescence and measuring voluntary alcohol drinking concurrently and in adulthood. Polysomnography was used to validate the efficacy of the sleep restriction procedure. Behavioral tests were used to assess anxiety, risky behavior, and despair. In humans, after adjusting for covariates, we found a cross-sectional association between all sleep parameters and alcohol consumption at 15 years of age but not at 24 years. Notably, alcohol consumption (Alcohol Use Disorder Identification Test for Consumption) at 24 years was predicted by insufficient sleep at 15 years whilst alcohol drinking at 15 years could not predict sleep problems at 24. In msP rats, adolescent chronic sleep restriction escalated alcohol consumption and led to increased propensity for risk-taking behavior in adolescence and adulthood. Our findings demonstrate that adolescent insufficient sleep causally contributes to higher adult alcohol consumption, potentially by promoting risky behavior.

2.
Curr Issues Mol Biol ; 46(3): 2144-2154, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534754

RESUMEN

Chronic sleep restriction (CSR) is a prevalent issue in modern society that is associated with several pathological states, ranging from neuropsychiatric to metabolic diseases. Despite its known impact on metabolism, the specific effects of CSR on the molecular mechanisms involved in maintaining metabolic homeostasis at the level of white adipose tissue (WAT) remain poorly understood. Therefore, this study aimed to investigate the influence of CSR on sirtuin 1 (SIRT1) and the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway in the WAT of young male mice. Both genes interact with specific targets involved in multiple metabolic processes, including adipocyte differentiation, browning, and lipid metabolism. The quantitative PCR (qPCR) results demonstrated a significant upregulation of SIRT-1 and some of its target genes associated with the transcriptional regulation of lipid homeostasis (i.e., PPARα, PPARγ, PGC-1α, and SREBF) and adipose tissue development (i.e., leptin, adiponectin) in CSR mice. On the contrary, DNA-binding transcription factors (i.e., CEBP-ß and C-myc), which play a pivotal function during the adipogenesis process, were found to be down-regulated. Our results also suggest that the induction of SIRT1-dependent molecular pathways prevents weight gain. Overall, these findings offer new, valuable insights into the molecular adaptations of WAT to CSR, in order to support increased energy demand due to sleep loss.

3.
Commun Biol ; 7(1): 193, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365955

RESUMEN

REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.


Asunto(s)
Electroencefalografía , Sueño REM , Sueño REM/fisiología , Estimulación Acústica , Cognición , Electrofisiología
4.
Nutrients ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986248

RESUMEN

Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut-brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut-brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut-brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss.


Asunto(s)
Probióticos , Trastornos del Inicio y del Mantenimiento del Sueño , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Inflamación/etiología , Privación de Sueño/complicaciones , Antiinflamatorios/farmacología , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Hormonas/farmacología
5.
BMC Biol ; 21(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600217

RESUMEN

BACKGROUND: Prolonged cellular activity may overload cell function, leading to high rates of protein synthesis and accumulation of misfolded or unassembled proteins, which cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) to re-establish normal protein homeostasis. Previous molecular work has demonstrated that sleep deprivation (SD) leads to ER stress in neurons, with a number of ER-specific proteins being upregulated to maintain optimal cellular proteostasis. It is still not clear which cellular processes activated by sleep deprivation lead to ER- stress, but increased cellular metabolism, higher request for protein synthesis, and over production of oxygen radicals have been proposed as potential contributing factors. Here, we investigate the transcriptional and ultrastructural ER and mitochondrial modifications induced by sleep loss. RESULTS: We used gene expression analysis in mouse forebrains to show that SD was associated with significant transcriptional modifications of genes involved in ER stress but also in ER-mitochondria interaction, calcium homeostasis, and mitochondrial respiratory activity. Using electron microscopy, we also showed that SD was associated with a general increase in the density of ER cisternae in pyramidal neurons of the motor cortex. Moreover, ER cisternae established new contact sites with mitochondria, the so-called mitochondria associated membranes (MAMs), important hubs for molecule shuttling, such as calcium and lipids, and for the modulation of ATP production and redox state. Finally, we demonstrated that Drosophila male mutant flies (elav > linker), in which the number of MAMs had been genetically increased, showed a reduction in the amount and consolidation of sleep without alterations in the homeostatic sleep response to SD. CONCLUSIONS: We provide evidence that sleep loss induces ER stress characterized by increased crosstalk between ER and mitochondria. MAMs formation associated with SD could represent a key phenomenon for the modulation of multiple cellular processes that ensure appropriate responses to increased cell metabolism. In addition, MAMs establishment may play a role in the regulation of sleep under baseline conditions.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Privación de Sueño , Animales , Masculino , Ratones , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Privación de Sueño/metabolismo , Drosophila
6.
Elife ; 112022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576248

RESUMEN

Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.


Asunto(s)
Axones , Neuronas , Ratones , Animales , Axones/fisiología , Neuronas/fisiología , Cerebelo/fisiología , Sueño/fisiología , Sinapsis/fisiología , Células de Purkinje/fisiología
7.
Prog Neurobiol ; 218: 102338, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35963360

RESUMEN

Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.


Asunto(s)
Corteza Prefrontal , Sueño , Adolescente , Adulto , Encéfalo , Mapeo Encefálico , Emociones/fisiología , Humanos , Corteza Prefrontal/fisiología , Sueño/fisiología
8.
Animals (Basel) ; 11(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34827905

RESUMEN

Apelin (APLN) is an adipokine mainly produced by adipose tissue and related to an individual's nutritional status as well as digestive apparatus functions. In this work, APLN and its receptor (APLNR) were investigated, by immunohistochemistry, in the abomasum and duodenum of 15 Comisana × Appenninica adult sheep reared in a semi-natural pasture. Organ samples were collected after maximum pasture flowering (M × F group) and after maximum pasture dryness (M × D group); the experimental group (E × p group) received a feed supplementation of 600 grams/day/head of barley and corn in addition to M × D group feeding. APLN and APLNR were identified in the lining epithelium and the fundic gland chief cells of the abomasum. APLNR was observed in the lining epithelium, in the crypts and the serotonin secreting cells of the duodenum. Similar reactivity was observed between the M × F and E × p groups, while the M × D group showed a lower intensity of immunostaining for both APLN and APLNR in all positive structures but the duodenal serotonin neuroendocrine cells. Hence, our findings show that the E × p group presents a picture quite overlapped with M × F and suggest that food supplementation has a maintaining effect on the apelinergic system expression in the investigated digestive tracts of the sheep.

9.
Brain Commun ; 3(2): fcab108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164621

RESUMEN

Sleep spindles of non-REM sleep are transient, waxing-and-waning 10-16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations. By studying a rare sample of callosotomized, split-brain patients, we recently demonstrated that the total resection of the corpus callosum is associated with a significant reduction in the inter-hemispheric propagation of non-REM slow waves. Interestingly, sleep spindles are often temporally and spatially grouped around slow waves (0.5-4 Hz), and this coordination is thought to have an important role in sleep-dependent learning and memory consolidation. Given these premises, here we set out to investigate whether total callosotomy may affect the generation and spreading of sleep spindles, as well as their coupling with sleep slow waves. To this aim, we analysed overnight high-density EEG recordings (256 electrodes) collected in five patients who underwent total callosotomy due to drug-resistant epilepsy (age 40-53, two females), three non-callosotomized neurological patients (age 44-66, two females), and in a sample of 24 healthy adult control subjects (age 20-47, 13 females). Individual sleep spindles were automatically detected using a validated algorithm and their properties and topographic distributions were computed. All analyses were performed with and without a regression-based adjustment accounting for inter-subject age differences. The comparison between callosotomized patients and healthy subjects did not reveal systematic variations in spindle density, amplitude or frequency. However, callosotomized patients were characterized by a reduced spindle duration, which could represent the result of a faster desynchronization of spindle activity across cortical areas of the two hemispheres. In contrast with our previous findings regarding sleep slow waves, we failed to detect in callosotomized patients any clear, systematic change in the inter-hemispheric synchronization of sleep spindles. In line with this, callosotomized patients were characterized by a reduced extension of the spatial association between temporally coupled spindles and slow waves. Our findings are consistent with a dependence of spindles on thalamo-cortical rather than cortico-cortical connections in humans, but also revealed that, despite their temporal association, slow waves and spindles are independently regulated in terms of topographic expression.

10.
Sleep ; 44(1)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32770244

RESUMEN

A good quality and amount of sleep are fundamental to preserve cognition and affect. New evidence also indicates that poor sleep is detrimental to brain myelination. In this study, we test the hypothesis that sleep quality and/or quantity relate to variability in cognitive and emotional function via the mediating effect of interindividual differences in proxy neuroimaging measures of white matter integrity and intracortical myelination. By employing a demographically and neuropsychologically well-characterized sample of healthy people drawn from the Human Connectome Project (n = 974), we found that quality and amount of sleep were only marginally linked to cognitive performance. In contrast, poor quality and short sleep increased negative affect (i.e. anger, fear, and perceived stress) and reduced life satisfaction and positive emotionality. At the brain level, poorer sleep quality and shorter sleep duration related to lower intracortical myelin in the mid-posterior cingulate cortex (p = 0.038), middle temporal cortex (p = 0.024), and anterior orbitofrontal cortex (OFC, p = 0.034) but did not significantly affect different measures of white matter integrity. Finally, lower intracortical myelin in the OFC mediated the association between poor sleep quality and negative emotionality (p < 0.05). We conclude that intracortical myelination is an important mediator of the negative consequences of poor sleep on affective behavior.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Giro del Cíngulo , Humanos , Vaina de Mielina , Sueño
11.
Curr Opin Physiol ; 15: 74-81, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32642626

RESUMEN

Sleep-dependent synaptic plasticity is crucial for optimal cognition. However, establishing the direction of synaptic plasticity during sleep has been particularly challenging since data in support of both synaptic potentiation and depotentiation have been reported. This review focuses on structural synaptic plasticity across sleep and wake and summarizes recent developments in the use of 3-dimensional electron microscopy as applied to this field.

12.
J Neurosci ; 40(29): 5589-5603, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541070

RESUMEN

The slow waves of non-rapid eye movement (NREM) sleep reflect experience-dependent plasticity and play a direct role in the restorative functions of sleep. Importantly, slow waves behave as traveling waves, and their propagation is assumed to occur through cortico-cortical white matter connections. In this light, the corpus callosum (CC) may represent the main responsible for cross-hemispheric slow-wave propagation. To verify this hypothesis, we performed overnight high-density (hd)-EEG recordings in five patients who underwent total callosotomy due to drug-resistant epilepsy (CPs; two females), in three noncallosotomized neurologic patients (NPs; two females), and in a sample of 24 healthy adult subjects (HSs; 13 females). In all CPs slow waves displayed a significantly reduced probability of cross-hemispheric propagation and a stronger inter-hemispheric asymmetry. In both CPs and HSs, the incidence of large slow waves within individual NREM epochs tended to differ across hemispheres, with a relative overall predominance of the right over the left hemisphere. The absolute magnitude of this asymmetry was greater in CPs relative to HSs. However, the CC resection had no significant effects on the distribution of slow-wave origin probability across hemispheres. The present results indicate that CC integrity is essential for the cross-hemispheric traveling of slow waves in human sleep, which is in line with the assumption of a direct relationship between white matter integrity and slow-wave propagation. Our findings also revealed a residual cross-hemispheric slow-wave propagation that may rely on alternative pathways, including cortico-subcortico-cortical loops. Finally, these data indicate that the lack of the CC does not lead to differences in slow-wave generation across brain hemispheres.SIGNIFICANCE STATEMENT The slow waves of NREM sleep behave as traveling waves, and their propagation has been suggested to reflect the integrity of white matter cortico-cortical connections. To directly assess this hypothesis, here we investigated the role of the corpus callosum in the cortical spreading of NREM slow waves through the study of a rare population of totally callosotomized patients. Our results demonstrate a causal role of the corpus callosum in the cross-hemispheric traveling of sleep slow waves. Additionally, we found that callosotomy does not affect the relative tendency of each hemisphere at generating slow waves. Incidentally, we also found that slow waves tend to originate more often in the right than in the left hemisphere in both callosotomized and healthy adult individuals.


Asunto(s)
Ondas Encefálicas , Cuerpo Calloso/fisiología , Sueño de Onda Lenta , Adulto , Anciano , Cuerpo Calloso/cirugía , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimiento de Escisión Encefálica
14.
Front Cell Neurosci ; 14: 573944, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33633542

RESUMEN

Perisynaptic astrocytic processes (PAPs) carry out several different functions, from metabolite clearing to control of neuronal excitability and synaptic plasticity. All these functions are likely orchestrated by complex cellular machinery that resides within the PAPs and relies on a fine interplay between multiple subcellular components. However, traditional transmission electron microscopy (EM) studies have found that PAPs are remarkably poor of intracellular organelles, failing to explain how such a variety of PAP functions are achieved in the absence of a proportional complex network of intracellular structures. Here, we use serial block-face scanning EM to reconstruct and describe in three dimensions PAPs and their intracellular organelles in two different mouse cortical regions. We described five distinct organelles, which included empty and full endosomes, phagosomes, mitochondria, and endoplasmic reticulum (ER) cisternae, distributed within three PAPs categories (branches, branchlets, and leaflets). The majority of PAPs belonged to the leaflets category (~60%), with branchlets representing a minority (~37%). Branches were rarely in contact with synapses (<3%). Branches had a higher density of mitochondria and ER cisternae than branchlets and leaflets. Also, branches and branchlets displayed organelles more frequently than leaflets. Endosomes and phagosomes, which accounted for more than 60% of all the organelles detected, were often associated with the same PAP. Likewise, mitochondria and ER cisternae, representing ~40% of all organelles were usually associated. No differences were noted between the organelle distribution of the somatosensory and the anterior cingulate cortex. Finally, the organelle distribution in PAPs did not largely depend on the presence of a spine apparatus or a pre-synaptic mitochondrion in the synapse that PAPs were enwrapping, with some exceptions regarding the presence of phagosomes and ER cisternae, which were slightly more represented around synapses lacking a spine apparatus and a presynaptic mitochondrion, respectively. Thus, PAPs contain several subcellular organelles that could underlie the diverse astrocytic functions carried out at central synapses.

15.
Sleep ; 42(11)2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31374117

RESUMEN

In adolescent and adult brains several molecular, electrophysiological, and ultrastructural measures of synaptic strength are higher after wake than after sleep [1, 2]. These results support the proposal that a core function of sleep is to renormalize the increase in synaptic strength associated with ongoing learning during wake, to reestablish cellular homeostasis and avoid runaway potentiation, synaptic saturation, and memory interference [2, 3]. Before adolescence however, when the brain is still growing and many new synapses are forming, sleep is widely believed to promote synapse formation and growth. To assess the role of sleep on synapses early in life, we studied 2-week-old mouse pups (both sexes) whose brain is still undergoing significant developmental changes, but in which sleep and wake are easy to recognize. In two strains (CD-1, YFP-H) we found that pups spend ~50% of the day asleep and show an immediate increase in total sleep duration after a few hours of enforced wake, indicative of sleep homeostasis. In YFP-H pups we then used serial block-face electron microscopy to examine whether the axon-spine interface (ASI), an ultrastructural marker of synaptic strength, changes between wake and sleep. We found that the ASI of cortical synapses (layer 2, motor cortex) was on average 33.9% smaller after sleep relative to after extended wake and the differences between conditions were consistent with multiplicative scaling. Thus, the need for sleep-dependent synaptic renormalization may apply also to the young, pre-weaned cerebral cortex, at least in the superficial layers of the primary motor area.


Asunto(s)
Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sueño/fisiología , Sinapsis/fisiología , Vigilia/fisiología , Animales , Animales Recién Nacidos , Axones/fisiología , Espinas Dendríticas/fisiología , Fenómenos Electrofisiológicos , Femenino , Aprendizaje , Masculino , Ratones , Microscopía Electrónica
16.
J Neurosci ; 39(34): 6613-6625, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31263066

RESUMEN

Sleep has been hypothesized to rebalance overall synaptic strength after ongoing learning during waking leads to net synaptic potentiation. If so, because synaptic strength and size are correlated, synapses on average should be larger after wake and smaller after sleep. This prediction was recently confirmed in mouse cerebral cortex using serial block-face electron microscopy (SBEM). However, whether these findings extend to other brain regions is unknown. Moreover, sleep deprivation by gentle handling was reported to produce hippocampal spine loss, raising the question of whether synapse size and number are differentially affected by sleep and waking. Here we applied SBEM to measure axon-spine interface (ASI), the contact area between pre-synapse and post-synapse, and synapse density in CA1 stratum radiatum. Adolescent YFP-H mice were studied after 6-8 h of sleep (S = 6), spontaneous wake at night (W = 4) or wake enforced during the day by novelty exposure (EW = 4; males/females balanced). In each animal ≥425 ASIs were measured and synaptic vesicles were counted in ~100 synapses/mouse. Reconstructed dendrites included many small, nonperforated synapses and fewer large, perforated synapses. Relative to S, ASI sizes in perforated synapses shifted toward higher values after W and more so after EW. ASI sizes in nonperforated synapses grew after EW relative to S and W, and so did their density. ASI size correlated with presynaptic vesicle number but the proportion of readily available vesicles decreased after EW, suggesting presynaptic fatigue. Thus, CA1 synapses undergo changes consistent with sleep-dependent synaptic renormalization and their number increases after extended wake.SIGNIFICANCE STATEMENT Sleep benefits learning, memory consolidation, and the integration of new with old memories, but the underlying mechanisms remain highly debated. One hypothesis suggests that sleep's cognitive benefits stem from its ability to renormalize total synaptic strength, after ongoing learning during wake leads to net synaptic potentiation. Supporting evidence for this hypothesis mainly comes from the cerebral cortex, including the observation that cortical synapses are larger after wake and smaller after sleep. Using serial electron microscopy, we find here that sleep/wake synaptic changes consistent with sleep-dependent synaptic renormalization also occur in the CA1 region. Thus, the role of sleep in maintaining synaptic homeostasis may extend to the hippocampus, a key area for learning and synaptic plasticity.


Asunto(s)
Axones/patología , Región CA1 Hipocampal/patología , Espinas Dendríticas/patología , Privación de Sueño/patología , Sinapsis/patología , Envejecimiento , Animales , Femenino , Aprendizaje , Masculino , Memoria , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Transmisión Sináptica , Vigilia
17.
Glia ; 67(11): 2142-2152, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31237382

RESUMEN

Myelin plasticity is gaining increasing recognition as an essential partner to synaptic plasticity, which mediates experience-dependent brain structure and function. However, how neural activity induces adaptive myelination and which mechanisms are involved remain open questions. More than two decades of transcriptomic studies in rodents have revealed that hundreds of brain transcripts change their expression in relation to the sleep-wake cycle. These studies consistently report upregulation of myelin-related genes during sleep, suggesting that sleep represents a window of opportunity during which myelination occurs. In this review, we summarize recent molecular and morphological studies detailing the dependence of myelin dynamics after sleep, wake, and chronic sleep loss, a condition that can affect myelin substantially. We present novel data about the effects of sleep loss on the node of Ranvier length and provide a hypothetical mechanism through which myelin changes in response to sleep loss. Finally, we discuss the current findings in humans, which appear to confirm the important role of sleep in promoting white matter integrity.


Asunto(s)
Vaina de Mielina/metabolismo , Plasticidad Neuronal/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Encéfalo/fisiología , Humanos , Oligodendroglía/fisiología , Sueño/genética
18.
Behav Brain Res ; 364: 149-156, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30768995

RESUMEN

Several neurodegenerative disorders, namely Parkinson's disease dementia, dementia with Lewy bodies, and Alzheimer's disease, share common pathophysiological features, such as (1) cognitive deficits, (2) glutamatergic hyperactivity-related excitotoxicity, and (3) deposition of α-synuclein (α-syn) and ß-amyloid (Aß). Ceftriaxone (CEF) is a well-tested and safe drug that has been used as an antibiotic for several decades. Recent studies have demonstrated the following effects of CEF: (1) increasing glutamate transporter-1 expression and glutamate reuptake and suppressing excitotoxicity, (2) binding well with α-syn and inhibition of α-syn polymerization, (3) modulating expression of genes related to Aß metabolism, and (4) enhancing neurogenesis and recovery of neuronal density. In addition, our data revealed that CEF ameliorates seizure and abnormal neuronal firing in the brain. These results suggest the potential of CEF in treating neuronal disorders. This paper addresses the effects and pharmacology of CEF.


Asunto(s)
Ceftriaxona/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer , Encéfalo/metabolismo , Humanos , Enfermedad por Cuerpos de Lewy , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson
19.
Front Cell Neurosci ; 12: 308, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254569

RESUMEN

Astrocytic glycogen represents the only form of glucose storage in the brain, and one of the outcomes of its breakdown is the production of lactate that can be used by neurons as an alternative energetic substrate. Since brain metabolism is higher in wake than in sleep, it was hypothesized that glycogen stores are depleted during wake and replenished during sleep. Furthermore, it was proposed that glycogen depletion leads to the progressive increase in adenosine levels during wake, providing a homeostatic signal that reflects the buildup of sleep pressure. However, previous studies that measured glycogen dynamics across the sleep/wake cycle obtained inconsistent results, and only measured glycogen in whole tissue. Since most energy in the brain is used to sustain synaptic activity, here we employed tridimensional electron microscopy to quantify glycogen content in the astrocytic processes surrounding the synapse. We studied axon-spine synapses in the frontal cortex of young mice after ~7 h of sleep, 7-8 h of spontaneous or forced wake, or 4.5 days of sleep restriction. Relative to sleep, all wake conditions increased the number of glycogen granules around the synapses to a similar extent. However, progressively longer periods of wake were associated with progressively smaller glycogen granules, suggesting increased turnover. Despite the increased number of granules, in all wake conditions the estimated amount of glucose within the granules was lower than in sleep, indicating that sleep may favor glucose storage. Finally, chronic sleep restriction moved glycogen granules closer to the synaptic cleft. Thus, both short and long wake lead to increased glycogen turnover around cortical synapses, whereas sleep promotes glycogen accumulation.

20.
Sci Rep ; 8(1): 11225, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30046159

RESUMEN

By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.


Asunto(s)
Metabolómica , Corteza Prefrontal/metabolismo , Sueño/fisiología , Vigilia/fisiología , Animales , Ácido Glutámico/metabolismo , Ácido Homovanílico/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Corteza Prefrontal/fisiopatología , Ácido Pirúvico/metabolismo , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Triptófano/metabolismo , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...