Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(8): 10439-10449, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38380672

RESUMEN

The development of electrochromic systems, known for the modulation of their optical properties under an applied voltage, depends on the replacement of the state-of-the-art ITO (In2O3:Sn) transparent electrode (TE) as well as the improvement of electrochromic films. This study presents an innovative ITO-free electrochromic film architecture utilizing oxide-coated silver nanowire (AgNW) networks as a TE and V2O5 as an electrochromic oxide layer. The TE was prepared by simple spray deposition of AgNWs that allowed for tuning different densities of the network and hence the resistance and transparency of the film. The conformal oxide coating (SnO2 or ZnO) on AgNWs was deposited by atmospheric-pressure spatial atomic layer deposition, an open-air fast and scalable process yielding a highly stable electrode. V2O5 thin films were then deposited by radio frequency magnetron sputtering on the AgNW-based TE. Independent of the oxide's nature, a 20 nm protective layer thickness was insufficient to prevent the deterioration of the AgNW network during V2O5 deposition. On the contrary, crystalline V2O5 films were grown on 30 nm thick ZnO or SnO2-coated AgNWs, exhibiting a typical orange color. Electrochromic characterization demonstrated that only V2O5 films deposited on 30 nm thick SnO2-coated AgNW showed characteristic oxidation-reduction peaks in the Li+-based liquid electrolyte associated with a reversible orange-to-blue color switch for at least 500 cycles. The electrochromic key properties of AgNW/SnO2 (30 nm)/V2O5 films are discussed in terms of structural and morphological changes due to the AgNW network and the nature and thickness of the two protective oxide coatings.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251157

RESUMEN

In this work, the effect of thermal annealing on silver nanoparticles@polymer (AgNPs@polymer) nanocomposite coatings was investigated. These photo-generated metallized coatings have a spatial distribution of metal nanoparticles, with a depth-wise decrease in their concentration. During annealing, both structural and morphological variations, as well as a spatial reorganization of AgNPs, were observed, both at the surface and in the core of the AgNPs@polymer coating. Owing to their increased mobility, the polymer chains reorganize spontaneously, and, at the same time, a hopping diffusion process, caused by the minimization of the surface energy, promotes the migration and coalescence of the silver nanoparticles towards the surface. The layer of discrete nanoparticles gradually transforms from a weakly percolative assembly to a denser and more networked structure. Consequently, the surface of the coatings becomes significantly more electrically conductive, hydrophobic, and reflective. The general trend is that the thinner the nanohybrid coating, the more pronounced the effect of thermal annealing on its spatial reorganization and properties. These results open up interesting prospects in the field of metallized coating technology and pave the way for integration into a wide variety of devices, e.g., efficient and inexpensive reflectors for energy-saving applications, electrically conductive microdevices, and printed electronic microcircuits.

3.
Nanoscale ; 16(2): 564-579, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38099744

RESUMEN

The thermal instability of silver nanowires (AgNWs) leads to a significant increase of the electrical resistance of AgNW networks. A better understanding of the relationship between the structural and electrical properties of AgNW networks is primordial for their efficient integration as transparent electrodes (TEs) for next-generation flexible optoelectronics. Herein, we investigate the in situ evolution of the main crystallographic parameters (i.e. integrated intensity, interplanar spacing and peak broadening) of two Ag-specific Bragg peaks, (111) and (200), during a thermal ramp up to 400 °C through in situ X-ray diffraction (XRD) measurements, coupled with in situ electrical resistance measurements on the same AgNW network. First, we assign the (111) and (200) peaks of χ-scans to each five crystallites within AgNWs using a rotation matrix model. Then, we show that the thermal transition of bare AgNW networks occurs within a temperature range of about 25 °C for the electrical properties, while the structural transition spans over 200 °C. The effect of a protective tin oxide coating (SnO2) on AgNW networks is also investigated through this original in situ coupling approach. For SnO2-coated AgNW networks, the key XRD signatures from AgNWs remain constant, since the SnO2 coating prevents Ag atomic surface diffusion, and thus morphological instability (i.e. spheroidization). Moreover, the SnO2 coating does not affect the strain of both (111) and (200) planes. The thermal expansion for bare and SnO2-coated AgNW networks appears very similar to the thermal expansion of bulk Ag. Our findings provide insights into the underlying failure mechanisms of AgNW networks subjected to thermal stress, helping researchers to develop more robust and durable TEs based on metallic nanowire networks.

4.
Nat Commun ; 13(1): 5322, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085298

RESUMEN

Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014-2.1018 cm-3), mobility (1-86 cm2/V.s), and optical bandgap (2.2-2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.

5.
Small ; 18(19): e2106006, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35195360

RESUMEN

Transparent electrodes (TEs) are pivotal components in many modern devices such as solar cells, light-emitting diodes, touch screens, wearable electronic devices, smart windows, and transparent heaters. Recently, the high demand for flexibility and low cost in TEs requires a new class of transparent conductive materials (TCMs), serving as substitutes for the conventional indium tin oxide (ITO). So far, ITO has been the most used TCM despite its brittleness and high cost. Among the different emerging alternative materials to ITO, metallic nanomaterials have received much interest due to their remarkable optical-electrical properties, low cost, ease of manufacturing, flexibility, and widespread applicability. These involve metal grids, thin oxide/metal/oxide multilayers, metal nanowire percolating networks, or nanocomposites based on metallic nanostructures. In this review, a comparison between TCMs based on metallic nanomaterials and other TCM technologies is discussed. Next, the different types of metal-based TCMs developed so far and the fabrication technologies used are presented. Then, the challenges that these TCMs face toward integration in functional devices are discussed. Finally, the various fields in which metal-based TCMs have been successfully applied, as well as emerging and potential applications, are summarized.


Asunto(s)
Nanoestructuras , Nanocables , Conductividad Eléctrica , Electrodos , Metales/química , Nanocables/química , Óxidos
6.
Nanomaterials (Basel) ; 11(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835550

RESUMEN

Silver nanowire (AgNW) networks have been intensively investigated in recent years. Thanks to their attractive physical properties in terms of optical transparency and electrical conductivity, as well as their mechanical performance, AgNW networks are promising transparent electrodes (TE) for several devices, such as solar cells, transparent heaters, touch screens or light-emitting devices. However, morphological instabilities, low adhesion to the substrate, surface roughness and ageing issues may limit their broader use and need to be tackled for a successful performance and long working lifetime. The aim of the present work is to highlight efficient strategies to optimize the physical properties of AgNW networks. In order to situate our work in relation to existing literature, we briefly reported recent studies which investigated physical properties of AgNW networks. First, we investigated the optimization of optical transparency and electrical conductivity by comparing two types of AgNWs with different morphologies, including PVP layer and AgNW dimensions. In addition, their response to thermal treatment was deeply investigated. Then, zinc oxide (ZnO) and tin oxide (SnO2) protective films deposited by Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD) were compared for one type of AgNW. We clearly demonstrated that coating AgNW networks with these thin oxide layers is an efficient approach to enhance the morphological stability of AgNWs when subjected to thermal stress. Finally, we discussed the main future challenges linked with AgNW networks optimization processes.

7.
Nanotechnology ; 32(44)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374663

RESUMEN

Silver nanowire (AgNW) networks are among the most promising indium-free, flexible transparent electrodes for energy, lighting and heating devices. However, the lack of stability of such networks is a key factor that limits their industrial application. While applications require homogeneous networks, non-homogeneous AgNW networks are intentionally prepared in the present work to probe the mechanisms leading to failure under electrical stress. We show that induced non-homogeneities have a strong impact both on the spatial distribution of temperature (measured by IR imaging) and the current density throughout the electrode (as deduced from modeling). Regions with higher current density under elevated electrical stress are correlated to the origin of degradation. Furthermore, the influence of a zinc oxide (ZnO) layer on electrical performances of non-homogeneous specimens is studied. Thanks to ZnO coating, the tortuosity of electrical potential lines measured by the one-probe mapping technique is much lower than for bare networks. Additionally, coated network electrical failure occurs at 40% higher voltage compared to bare network, over 18 V, while reaching superior power-induced heating of 360 °C. The results presented here will contribute to the design and fabrication of more robust nanowire networks, particularly for application in transparent heaters.

8.
ACS Appl Mater Interfaces ; 13(18): 21971-21978, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33940794

RESUMEN

This article reports on the fabrication and investigation of low-emissivity (low-E) coatings based on random networks of silver nanowires (AgNWs). The transparent layers based on AgNWs do exhibit low emissivity while being still transparent: an overall emissivity as low as 0.21 at 78% total transmittance was obtained. A simple physical model allows to rationalize the emissivity-transparency dependence and a good agreement with experimental data is observed. This model demonstrates the role played by AgNWs which partially reflect IR photons emitted by the substrate, exacerbating then the presence of AgNWs and lowering the total emissivity. The potential use of such layers in functional devices is hampered by the poor intrinsic surface adhesion of the AgNWs, which renders the coating fragile and prone to mechanical damaging. Two very efficient encapsulation processes based on the deposition of a conformal alumina thin film using the spatial atomic layer deposition technique and the solution processed layer deposition of a polysiloxane varnish have been developed to thwart this weakness. Both coatings combine sturdy mechanical resistance relying on a strong interfacial adhesion and excellent optical transmittance properties. The performances for the mechanically resistant low-E coatings achieve an overall emissivity as low as 0.34 at 74% total transparency. The set of optical properties and mechanical resistance of the reported AgNWs based low-E coatings combined with the ease of fabrication and the cost-effective production process make it an excellent candidate for a wide set of applications, including smart windows for energy-saving buildings.

9.
Small ; 17(21): e2007344, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33825334

RESUMEN

Threshold switching devices are fundamental active elements in more than Moore approaches, integrating the new generation of non-volatile memory devices. Here, the authors report an in-plane threshold resistive switching device with an on/off ratio above 106 , a low resistance state of 10 to 100 kΩ and a high resistance state of 10 to 100 GΩ. Our devices are based on nanocomposites of silver nanowire networks and titanium oxide, where volatile unipolar threshold switching takes place across the gap left by partially spheroidized nanowires. Device reversibility depends on the titanium oxide thickness, while nanowire network density determines the threshold voltage, which can reach as low as 0.16 V. The switching mechanism is explained through percolation between metal-semiconductor islands, in a combined tunneling conduction mechanism, followed by a Schottky emission generated via Joule heating. The devices are prepared by low-cost, atmospheric pressure, and scalable techniques, enabling their application in printable, flexible, and transparent electronics.

10.
Nanoscale Adv ; 3(3): 675-681, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133849

RESUMEN

Metallic nanowire networks represent a promising solution for a new generation of transparent and flexible devices, including touch screens, solar cells and transparent heaters. They, however, lack stability under thermal and electrical stresses, often leading to the degradation of nanowires, which results in the loss of electrical percolation paths. We propose a comprehensive description of the degradation mechanism in a metallic nanowire network subjected to electrical stress. The nanowire network degradation is ascribed, at a very local scale, to the hot-spot formation and the subsequent propagation of a spatially correlated disruptive crack. We compare the behaviour of actual networks under electrical and thermal stresses to dynamic simulations of randomly deposited sticks on a 2D surface, and a thermal phenomenon simulated in a metal thin film. On one hand, such comparison allows us to deduce an average junction resistance between nanowires. On the other hand, we observed that initial flaws in a discrete network result in a local current density increase in the surrounding area, further leading to an amplified Joule effect. This phenomenon promotes the spatial correlation in the damage of the percolating network. Such non-reversible failure of the transparent electrode is in good agreement with experimental observations.

11.
Nanoscale Adv ; 2(9): 3804-3808, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36132760

RESUMEN

By using 1,2-propanediol instead of the classic polyol solvent, ethylene glycol, ultra-long silver nanowires are obtained in only 1 h. These nanowires lead to transparent electrodes with a sheet resistance of 5 Ohms per sq at a transparency of 94%, one of the highest figures of merit for nanowire electrodes ever reported.

12.
Nanoscale ; 11(42): 19969-19979, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31602448

RESUMEN

Silver nanowire (AgNW) networks have been lately much investigated thanks to their physical properties and are therefore foreseen to play a key role in many industrial devices as transparent electrodes, but their stability can be an issue. Although it has been shown that thin metal oxide coatings enhance the stability of AgNW networks, such stabilization is achieved at the expense of transparency. We demonstrate that by depositing a second oxide coating, which acts as an antireflective layer, it is possible to obtain highly stable and transparent composite electrodes. AgNW networks were deposited by the airbrush method, and zinc oxide (ZnO) and aluminum oxide (Al2O3) coatings were deposited, by Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD), using both glass and plastic substrates; therefore, the proposed fabrication method is low-cost and compatible with high-throughput scalable fabrication. The mechanical stability of bare, ZnO and ZnO/Al2O3-coated AgNWs upon bending is also presented. The obtained nanocomposites exhibit highly homogeneous and conformal oxide coatings with average thicknesses of a few tens of nanometers. Samples with bilayer coatings of 70 nm ZnO/70 nm Al2O3 still exhibit very good stability after annealing in air up to 450 °C for 6 repetitive cycles.

13.
Materials (Basel) ; 12(14)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373290

RESUMEN

Low-temperature-processed ITO thin films offer the potential of overcoming the doping limit by suppressing the equilibrium of compensating oxygen interstitial defects. To elucidate this potential, electrical properties of Sn-doped In 2 O 3 (ITO) thin films are studied in dependence on film thickness. In-operando conductivity and Hall effect measurements during annealing of room-temperature-deposited films, together with different film thickness in different environments, allow to discriminate between the effects of crystallization, grain growth, donor activation and oxygen diffusion on carrier concentrations and mobilities. At 200 ∘ C , a control of carrier concentration by oxygen incorporation or extraction is only dominant for very thin films. The electrical properties of thicker films deposited at room temperature are mostly affected by the grain size. The remaining diffusivity of compensating oxygen defects at 200 ∘ C is sufficient to screen the high Fermi level induced by deposition of Al 2 O 3 using atomic layer deposition (ALD), which disables the use of defect modulation doping at this temperature. The results indicate that achieving higher carrier concentrations in ITO thin films requires a control of the oxygen pressure during deposition in combination with seed layers to enhance crystallinity or the use of near room temperature ALD.

14.
Molecules ; 24(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370316

RESUMEN

Aluminum-doped tin oxide (SnO 2:Al) thin films were produced by an ultrasonic spray pyrolysis method. The effect of aluminum doping on structural, optical, and electrical properties of tin oxide thin films synthesized at 420 ∘C was investigated. Al doping induced a change in the morphology of tin oxide films and yielded films with smaller grain size. SnO 2 thin films undergo a structural reordering and have a texture transition from (301) to (101), and then to (002) preferred cristallographic orientation upon Al doping. The lattice parameters (a and c) decreases with Al doping, following in a first approximation Vegard's law. The optical transmission does not change in the visible region with an average transmittance value of 72-81%. Conversely, in the near infrared (NIR) region, the plasmon frequency shifts towards the IR region upon increasing Al concentration in the grown films. Nominally undoped SnO 2 have a conductivity of ∼1120 S/cm, which is at least two orders of magnitude larger than what is reported in literature. This higher conductivity is attributed to the Cl- ions in the SnCl 4.5(H 2 O) precursor, which would act as donor dopants. The introduction of Al into the SnO 2 lattice showed a decrease of the electrical conductivity of SnO 2 due to compensating hole generation. These findings will be useful for further studied tackling the tailoring of the properties of highly demanded fluorine doped tin oxide (FTO) films.


Asunto(s)
Aluminio/química , Pirólisis , Compuestos de Estaño/química , Óxido de Zinc/química , Conductividad Eléctrica , Indio/química , Espectrometría por Rayos X , Compuestos de Estaño/síntesis química , Ultrasonido
15.
Nanoscale ; 11(25): 12097-12107, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31184671

RESUMEN

We report the study of nanocomposite transparent electrodes based on aluminium doped zinc oxide (ZnO : Al) thin films and silver nanowire (AgNW) networks. The electrodes are fully fabricated by low-cost, open-air techniques, namely, atmospheric pressure spatial atomic layer deposition and spray coating. We show that the transparency and the electrical conductivity of the ZnO : Al/AgNW nanocomposites can be tuned by controlling the AgNW network density. We also demonstrate that the thermal, electrical and mechanical stabilities of the nanocomposites are drastically enhanced compared to those of AgNW networks or ZnO : Al thin films separately. Interestingly, we report a clear continuous decrease of the electrical resistance of the nanocomposites for network densities even below the percolation threshold. We propose a model to explain the relationship between the conductivity of the nanocomposites and the AgNW network density. Our physical model is based on the non-negligible contribution of percolating clusters of AgNWs for network densities below the percolation threshold. Our results provide a means to predicting the physical properties of such nanocomposites for applications in solar cells and other optoelectronic devices. Finally, the deposition methods used open the way towards stable, low-cost and flexible transparent electrodes for industrial applications.

16.
Nanomaterials (Basel) ; 8(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914155

RESUMEN

In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites integrating ZnO and sulfur doped TiO2 (S:TiO2) nanoparticles (i.e., ZnO-FTO and S:TiO2-FTO nanocomposites), the newly developed Al2O3-FTO nanocomposites show medium haze factor HT of about 30%, while they exhibit the least loss in total transmittance Ttot. In addition, Al2O3-FTO nanocomposites present a low fraction of large-sized nanoparticle agglomerates with equivalent radius req > 1 μm; effectively 90% of the nanoparticle agglomerates show req < 750 nm. The smaller feature size in Al2O3-FTO nanocomposites, as compared to ZnO-FTO and S:TiO2-FTO nanocomposites, makes them more suitable for applications that are sensitive to roughness and large-sized features. With the help of a simple optical model developed in this work, we have simulated the optical scattering by a single nanoparticle agglomerate characterized by bottom radius r0, top radius r1, and height h. It is found that r0 is the main factor affecting the HT(λ), which indicates that the haze factor of Al2O3-FTO and related FTO nanocomposites is mainly determined by the total surface coverage of all the nanoparticle agglomerates present.

17.
ACS Appl Mater Interfaces ; 10(22): 19208-19217, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29745648

RESUMEN

Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.

18.
ACS Nano ; 12(5): 4648-4659, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29722956

RESUMEN

Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.

19.
Nanotechnology ; 29(8): 085701, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29339582

RESUMEN

Whereas the integration of silver nanowires in functional devices has reached a fair level of maturity, the integration of copper nanowires still remains difficult, mainly due to the intrinsic instability of copper nanowires in ambient conditions. In this paper, copper nanowire based transparent electrodes with good performances (33 Ω sq-1 associated with 88% transparency) were obtained, and their degradation in different conditions was monitored, in particular by electrical measurements, transmission electron microscopy, x-ray photoelectron spectrometry and Auger electron spectroscopy. Several routes to stabilize the random networks of copper nanowires were evaluated. Encapsulation through laminated barrier film with optical clear adhesive and atmospheric pressure spatial atomic layer deposition were found to be efficient and were used for the fabrication of transparent film heaters.

20.
Nanoscale Horiz ; 3(5): 545-550, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254141

RESUMEN

Planar networks composed of 1-dimensional nanometer scale objects such as nanotubes or nanowires have been attracting growing interest in recent years. In this work we directly compare the percolation threshold of silver nanowire networks to predictions from Monte Carlo simulations, focusing particularly on understanding the impact of real world imperfections on the percolation onset in these systems. This work initially determines the percolation threshold as calculated from an ideal system using Monte Carlo methods. On this foundation we address the effects of perturbations in length, angular anisotropy and radius of curvature of the 1-dimensional objects, in line with those observed experimentally in purposely fabricated samples. This work explores why two-dimensional stick models in the literature currently underestimate the percolation onset in real systems and identifies which of the network's features play the most significant role in that deviation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...