Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Nat Commun ; 14(1): 5753, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717018

RESUMEN

The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.


Asunto(s)
Aspergilosis , Gripe Humana , Microbiota , Micosis , Neumonía , Humanos , Animales , Ratones , Triptófano , Serotonina
3.
Int Immunopharmacol ; 117: 109949, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36881979

RESUMEN

The recent COVID-19 pandemic has catalyzed the attention of the scientific community to the long-standing issue of lower respiratory tract infections. The myriad of airborne bacterial, viral and fungal agents to which humans are constantly exposed represents a constant threat to susceptible individuals and bears the potential to reach a catastrophic scale when the ease of inter-individual transmission couples with a severe pathogenicity. While we might be past the threat of COVID-19, the risk of future outbreaks of respiratory infections is tangible and argues for a comprehensive assessment of the pathogenic mechanisms shared by airborne pathogens. On this regard, it is clear that the immune system play a major role in dictating the clinical course of the infection. A balanced immune response is required not only to disarm the pathogens, but also to prevent collateral tissue damage, thus moving at the interface between resistance to infection and tolerance. Thymosin alpha1 (Tα1), an endogenous thymic peptide, is increasingly being recognized for its ability to work as an immunoregulatory molecule able to balance a derailed immune response, working as immune stimulatory or immune suppressive in a context-dependent manner. In this review, we will take advantage from the recent work on the COVID-19 pandemic to reassess the role of Tα1 as a potential therapeutic molecule in lung infections caused by either defective or exaggerated immune responses. The elucidation of the immune regulatory mechanisms of Tα1 might open a new window of opportunity for the clinical translation of this enigmatic molecule and a potential new weapon in our arsenal against lung infections.


Asunto(s)
COVID-19 , Timosina , Humanos , Timalfasina/uso terapéutico , Timosina/uso terapéutico , Pandemias , Pulmón
4.
Am J Respir Cell Mol Biol ; 68(3): 288-301, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36252182

RESUMEN

Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1ß heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.


Asunto(s)
Fibrosis Quística , Receptores de Hidrocarburo de Aril , Humanos , Ratones , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Hipoxia/metabolismo , Transducción de Señal , Inflamación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
5.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34847078

RESUMEN

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Asunto(s)
Autofagia/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteostasis/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos
6.
Cells ; 10(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202407

RESUMEN

Inflammation plays a major role in the pathophysiology of cystic fibrosis (CF), a multisystem disease. Anti-inflammatory therapies are, therefore, of interest in CF, provided that the inhibition of inflammation does not compromise the ability to fight pathogens. Here, we assess whether indole-3-aldehyde (3-IAld), a ligand of the aryl hydrocarbon receptor (AhR), may encompass such an activity. We resorted to biopharmaceutical technologies in order to deliver 3-IAld directly into the lung, via dry powder inhalation, or into the gut, via enteric microparticles, in murine models of CF infection and inflammation. We found the site-specific delivery of 3-IAld to be an efficient strategy to restore immune and microbial homeostasis in CF organs, and mitigate lung and gut inflammatory pathology in response to fungal infections, in the relative absence of local and systemic inflammatory toxicity. Thus, enhanced delivery to target organs of AhR agonists, such as 3-IAld, may pave the way for the development of safe and effective anti-inflammatory agents in CF.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/patología , Sistemas de Liberación de Medicamentos , Indoles/uso terapéutico , Administración por Inhalación , Aerosoles/farmacología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Indoles/administración & dosificación , Indoles/farmacología , Ligandos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/metabolismo
7.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207085

RESUMEN

Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.


Asunto(s)
Inflamasomas/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteínas Recombinantes/farmacología , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , Fibrosis Quística/etiología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Modelos Animales de Enfermedad , Enfermedad Granulomatosa Crónica/etiología , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
8.
Infect Immun ; 89(8): e0010521, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33782152

RESUMEN

The ability to predict invasive fungal infections (IFI) in patients with hematological malignancies is fundamental for successful therapy. Although gut dysbiosis is known to occur in hematological patients, whether airway dysbiosis also contributes to the risk of IFI has not been investigated. Nasal and oropharyngeal swabs were collected for functional microbiota characterization in 173 patients with hematological malignancies recruited in a multicenter, prospective, observational study and stratified according to the risk of developing IFI. A lower microbial richness and evenness were found in the pharyngeal microbiota of high-risk patients that were associated with a distinct taxonomic and metabolic profile. A murine model of IFI provided biologic plausibility for the finding that loss of protective anaerobes, such as Clostridiales and Bacteroidetes, along with an apparent restricted availability of tryptophan, is causally linked to the risk of IFI in hematologic patients and indicates avenues for antimicrobial stewardship and metabolic reequilibrium in IFI.


Asunto(s)
Enfermedades Hematológicas/complicaciones , Microbiota , Micosis/etiología , Faringe/microbiología , Neumonía/etiología , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Modelos Animales de Enfermedad , Neoplasias Hematológicas/complicaciones , Humanos , Metagenoma , Metagenómica/métodos , Ratones , Micosis/diagnóstico , Micosis/tratamiento farmacológico , Neumonía/diagnóstico , Neumonía/tratamiento farmacológico , Medición de Riesgo , Factores de Riesgo
9.
Eur J Med Chem ; 209: 112921, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33071052

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding for the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Long considered a lung disease for the devastating impact on the respiratory function, the recent diagnostic and therapeutic advances have shed the light on the extra-pulmonary manifestations of CF, including gastrointestinal, hepatobiliary and pancreatic symptoms. We have previously demonstrated that thymosin alpha1 (Tα1), a naturally occurring immunomodulatory peptide, displays multi-sided beneficial effects in CF that concur in ameliorating the lung inflammatory pathology. In the present study, by resorting to murine models of gut inflammation with clinical relevance for CF patients, we demonstrate that Tα1 can also have beneficial effects in extrapulmonary pathology. Specifically, Tα1 restored barrier integrity and immune homeostasis in the inflamed gut of CF mice as well as in mice with the metabolic syndrome, a disorder that may arise in CF patients with high caloric intake despite pancreatic sufficiency. The protective effects of Tα1 also extended to pancreas and liver, further emphasizing the beneficial effects of Tα1 in extra-pulmonary complications of CF. By performing wide-ranging multi-organ anti-inflammatory effects, Tα1 could potentially integrate current therapeutic approaches to tackle the complex symptomatology of CF disease.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Factores Inmunológicos/química , Timalfasina/química , Animales , Candida albicans/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Modelos Animales de Enfermedad , Femenino , Homeostasis/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Quinurenina/metabolismo , Hígado , Pulmón , Ratones , Mutación , Obesidad/tratamiento farmacológico , Páncreas , Transducción de Señal , Timalfasina/farmacología
10.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823705

RESUMEN

The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5'-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.


Asunto(s)
Interacciones Huésped-Patógeno , Fosfato de Piridoxal/metabolismo , Triptófano/metabolismo , Animales , Bacterias/metabolismo , Humanos , Mamíferos/metabolismo , Vitamina B 6/metabolismo
11.
Eur J Med Chem ; 206: 112717, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32823008

RESUMEN

Cystic fibrosis (CF) is a rare genetic disorder caused by a defect in the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR), resulting in ionic imbalance of surface fluid. Although affecting multiple organs, the progressive deterioration of respiratory function by recurrent infections and chronic inflammation represents the main cause of morbidity and mortality in CF patients. The development of modulators targeting the basic defect of CFTR has represented a major breakthrough in CF therapy, but the impact on inflammation has remained enigmatic. The emerging scenario taking hold in the field points to inflammation as a major, somehow missed, therapeutic target for prevention of lung decline. Not surprisingly, the development of anti-inflammatory drugs is taking its share in the drug development pipeline. But the path is not straightforward and targeting inflammation should be balanced with the increased risk of infection. The strategy to restore the homeostatic regulation of inflammation to efficiently respond to infection while preventing lung damage needs to be based on identifying and targeting endogenous immunoregulatory pathways that are defective in CF. We herein provide an overview of anti-inflammatory drugs currently approved or under investigation in CF patients, and present our recent studies on how the knowledge on defective immune pathways in CF may translate into innovative and selective anti-inflammatory therapeutics. Through the discovery of naturally occurring molecules or their synthetic mimics, this review emphasizes the critical importance of selectively targeting key inflammatory pathways to preserve immunocompetence in CF patients.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Animales , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Descubrimiento de Drogas , Humanos , Inflamación/complicaciones , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología
12.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32817121

RESUMEN

The advent of immune checkpoint inhibitors has represented a major boost in cancer therapy, but safety concerns are increasingly being recognized. Indeed, although beneficial at the tumor site, unlocking a safeguard mechanism of the immune response may trigger autoimmune-like effects at the periphery, thus making the safety of immune checkpoint inhibitors a research priority. Herein, we demonstrate that thymosin α1 (Tα1), an endogenous peptide with immunomodulatory activities, can protect mice from intestinal toxicity in a murine model of immune checkpoint inhibitor-induced colitis. Specifically, Tα1 efficiently prevented immune adverse pathology in the gut by promoting the indoleamine 2,3-dioxygenase (IDO) 1-dependent tolerogenic immune pathway. Notably, Tα1 did not induce IDO1 in the tumor microenvironment, but rather modulated the infiltration of T-cell subsets by inverting the ratio between CD8+ and Treg cells, an effect that may depend on Tα1 ability to regulate the differentiation and chemokine expression profile of DCs. Thus, through distinct mechanisms that are contingent upon the context, Tα1 represents a plausible candidate to improve the safety/efficacy profile of immune checkpoint inhibitors.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Timalfasina/metabolismo , Timalfasina/farmacología , Animales , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo , Timalfasina/fisiología , Timosina/metabolismo , Timosina/fisiología
13.
Blood Adv ; 4(14): 3443-3456, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32722785

RESUMEN

Invasive fungal infections are a major cause of disease and death in immunocompromised hosts, including patients undergoing allogeneic hematopoietic stem cell transplant (HSCT). Recovery of adaptive immunity after HSCT correlates strongly with recovery from fungal infection. Using initial selection of lymphocytes expressing the activation marker CD137 after fungal stimulation, we rapidly expanded a population of mainly CD4+ T cells with potent antifungal characteristics, including production of tumor necrosis factor α, interferon γ, interleukin-17, and granulocyte-macrophage colony stimulating factor. Cells were manufactured using a fully good manufacturing practice-compliant process. In vitro, the T cells responded to fungal antigens presented on fully and partially HLA-DRB1 antigen-matched presenting cells, including when the single common DRB1 antigen was allelically mismatched. Administration of antifungal T cells lead to reduction in the severity of pulmonary and cerebral infection in an experimental mouse model of Aspergillus. These data support the establishment of a bank of cryopreserved fungus-specific T cells using normal donors with common HLA DRB1 molecules and testing of partially HLA-matched third-party donor fungus-specific T cells as a potential therapeutic in patients with invasive fungal infection after HSCT.


Asunto(s)
Antifúngicos , Trasplante de Células Madre Hematopoyéticas , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Células Presentadoras de Antígenos , Hongos , Cadenas HLA-DRB1 , Humanos , Ratones
15.
Front Immunol ; 10: 2844, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867008

RESUMEN

Celiac disease (CD) is an immune-mediated disorder triggered by the ingestion of gluten and characterized by reversible small-bowel mucosal atrophy in genetically predisposed subjects. Although the prevalence of CD has increased, many aspects of this pathology are still unrecognized. Candida albicans, a commensal of the human gastrointestinal tract, has been linked to CD for a long time based, among others, upon the observation of similarity between the fungal wall component, hyphal wall protein 1, and CD-related gliadin T-cell epitopes. We have recently demonstrated that Candida may switch from commensal to pathogen contingent upon several players, including mast cells, key sentinels of the immune system at the interface between the environment and the host, and the pleiotropic cytokine IL-9. However, other factors are likely to play a role by altering the balance between inflammation and tolerance. In this regard, tryptophan and its metabolites are increasingly being recognized in promoting mucosal homeostasis by balancing the immune response to external cues. Based on these premises, we will discuss how the output of Candida colonization in the gut is highly contextual, being determined at the intersection of many immunological (IL-9/mast cells) and metabolic (tryptophan) pathways that ultimately dictate the Candida commensalism vs. pathogenicity in CD, thus paving the way for novel therapeutic opportunities in CD.


Asunto(s)
Candida albicans , Candidiasis/complicaciones , Enfermedad Celíaca/etiología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Animales , Biomarcadores , Candida albicans/inmunología , Candidiasis/inmunología , Candidiasis/microbiología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Citocinas/metabolismo , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Mastocitos/patología , Redes y Vías Metabólicas , Triptófano/metabolismo
16.
Front Immunol ; 10: 2364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681274

RESUMEN

Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequently by Candida albicans, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1ß and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against Candida infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Candida albicans/inmunología , Candidiasis Vulvovaginal , Indoles/farmacología , Interleucina-18/inmunología , Interleucinas/inmunología , Receptores de Hidrocarburo de Aril/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/genética , Candidiasis Vulvovaginal/inmunología , Candidiasis Vulvovaginal/patología , Femenino , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-18/genética , Interleucinas/genética , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th17/inmunología , Células Th17/patología , Interleucina-22
17.
Life Sci Alliance ; 2(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719116

RESUMEN

Chronic granulomatous disease (CGD) is a genetic disorder of the NADPH oxidase characterized by increased susceptibility to infections and hyperinflammation associated with defective autophagy and increased inflammasome activation. Herein, we demonstrate that thymosin ß4 (Tß4), a g-actin sequestering peptide with multiple and diverse intracellular and extracellular activities affecting inflammation, wound healing, fibrosis, and tissue regeneration, promoted in human and murine cells noncanonical autophagy, a form of autophagy associated with phagocytosis and limited inflammation via the death-associated protein kinase 1. We further show that the hypoxia inducible factor-1 (HIF-1)α was underexpressed in CGD but normalized by Tß4 to promote autophagy and up-regulate genes involved in mucosal barrier protection. Accordingly, inflammation and granuloma formation were impaired and survival increased in CGD mice with colitis or aspergillosis upon Tß4 treatment or HIF-1α stabilization. Thus, the promotion of endogenous pathways of inflammation resolution through HIF-1α stabilization is druggable in CGD by Tß4.


Asunto(s)
Enfermedad Granulomatosa Crónica/tratamiento farmacológico , Enfermedad Granulomatosa Crónica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Timosina/farmacología , Actinas/metabolismo , Animales , Autofagia/fisiología , Reparación del ADN , Femenino , Enfermedad Granulomatosa Crónica/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Células RAW 264.7
18.
Front Oncol ; 9: 873, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555601

RESUMEN

Thymosin alpha1 (Tα1), an endogenous peptide first isolated from the thymic tissue in the mid-sixties, has gained considerable attention for its immunostimulatory activity that led to its application to diverse pathological conditions, including cancer. Studies in animal models and human patients have shown promising results in different types of malignancies, especially when Tα1 was used in combination with other chemo- and immune therapies. For this reason, the advancements in our knowledge on the adjuvant role of Tα1 have moved in parallel with the development of novel cancer therapies in a way that Tα1 was integrated to changing paradigms and protocols, and tested for increased efficacy and safety. Cancer immunotherapy has recently experienced a tremendous boost following the development and clinical application of immune checkpoint inhibitors. By unleashing the full potential of the adaptive immune response, checkpoint inhibitors were expected to be very effective against tumors, but it soon became clear that a widespread and successful application was not straightforward and shortcomings in efficacy and safety clearly emerged. This scenario led to the development of novel concepts in immunotherapy and the design of combination protocols to overcome these limitations, thus opening up novel opportunities for Tα1 application. Herein, we summarize in a historical perspective the use of Tα1 in cancer, with particular reference to melanoma, hepatocellular carcinoma and lung cancer. We will discuss the current limitations of checkpoint inhibitors in clinical practice and the mechanisms at the basis of a potential application of Tα1 in combination protocols.

19.
Expert Opin Biol Ther ; 18(sup1): 43-48, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30063867

RESUMEN

INTRODUCTION: Thymosin alpha 1 (Tα1) is a naturally occurring polypeptide of 28 amino acids, whose mechanism of action is thought to be related to its ability to signal through innate immune receptors. Tα1 (ZADAXIN®) is used worldwide for treating viral infections, immunodeficiencies, and malignancies. Owing to its ability to activate the tolerogenic pathway of tryptophan catabolism - via the immunoregulatory enzyme indoleamine 2,3-dioxygenase - Tα1 potentiates immune tolerance mechanisms, breaking the vicious circle that perpetuates chronic inflammation in response to a variety of infectious noxae. AREAS COVERED: Tα1 has never been studied in Cystic fibrosis (CF) in which the hyperinflammatory state is associated with early and nonresolving activation of innate immunity, which impairs microbial clearance and promotes a self-sustaining condition of progressive lung damage. Optimal CF treatments should, indeed, not only rescue CF transmembrane conductance regulator protein localization and functionality but also alleviate the associated hyperinflammatory pathology. Because of the inherent complexity of the pathogenetic mechanisms, a multidrug approach is required. EXPERT OPINION: By providing a multipronged attack against CF, i.e. restraining inflammation and correcting the basic defect, Tα1 favorably opposed CF symptomatology in preclinical relevant disease settings, thus suggesting its possible exploitation for 'real-life' clinical efficacy in CF. This could represent a major conceptual advance in the CF field, namely the proposal of a drug with the unique activity to correct CFTR defects through regulation of inflammation.


Asunto(s)
Proteostasis , Timalfasina/fisiología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/genética , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Inflamación/genética , Inflamación/prevención & control , Proteostasis/efectos de los fármacos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Timalfasina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...