Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JMIR Med Inform ; 12: e49865, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046780

RESUMEN

BACKGROUND: Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria. OBJECTIVE: This study aims to develop an accessible tool for visual data exploration without the need for programming knowledge, adjusting complex parameterizations, or handling missing data. We sought to use statistical analysis using the setting of disease and control cohorts familiar to clinical researchers. We aimed to guide the user by identifying and highlighting data patterns associated with disease and reveal relations between attributes within the data set. METHODS: We introduce the attribute association graph, a novel graph structure designed for visual data exploration using robust statistical metrics. The nodes capture frequencies of participant attributes in disease and control cohorts as well as deviations between groups. The edges represent conditional relations between attributes. The graph is visualized using the Neo4j (Neo4j, Inc) data platform and can be interactively explored without the need for technical knowledge. Nodes with high deviations between cohorts and edges of noticeable conditional relationship are highlighted to guide the user during the exploration. The graph is accompanied by a dashboard visualizing variable distributions. For evaluation, we applied the graph and dashboard to the Hamburg City Health Study data set, a large cohort study conducted in the city of Hamburg, Germany. All data structures can be accessed freely by researchers, physicians, and patients. In addition, we developed a user test conducted with physicians incorporating the System Usability Scale, individual questions, and user tasks. RESULTS: We evaluated the attribute association graph and dashboard through an exemplary data analysis of participants with a general cardiovascular disease in the Hamburg City Health Study data set. All results extracted from the graph structure and dashboard are in accordance with findings from the literature, except for unusually low cholesterol levels in participants with cardiovascular disease, which could be induced by medication. In addition, 95% CIs of Pearson correlation coefficients were calculated for all associations identified during the data analysis, confirming the results. In addition, a user test with 10 physicians assessing the usability of the proposed methods was conducted. A System Usability Scale score of 70.5% and average successful task completion of 81.4% were reported. CONCLUSIONS: The proposed attribute association graph and dashboard enable intuitive visual data exploration. They are robust to high-dimensional as well as missing data and require no parameterization. The usability for clinicians was confirmed via a user test, and the validity of the statistical results was confirmed by associations known from literature and standard statistical inference.

2.
J Comput Aided Mol Des ; 36(9): 639-651, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35989379

RESUMEN

Fragment-based drug design is an established routine approach in both experimental and computational spheres. Growing fragment hits into viable ligands has increasingly shifted into the spotlight. FastGrow is an application based on a shape search algorithm that addresses this challenge at high speeds of a few milliseconds per fragment. It further features a pharmacophoric interaction description, ensemble flexibility, as well as geometry optimization to become a fully fledged structure-based modeling tool. All features were evaluated in detail on a previously reported collection of fragment growing scenarios extracted from crystallographic data. FastGrow was also shown to perform competitively versus established docking software. A case study on the DYRK1A kinase, using recently reported new chemotypes, illustrates FastGrow's features in practice and its ability to identify active fragments. FastGrow is freely available to the public as a web server at https://fastgrow.plus/ and is part of the SeeSAR 3D software package.


Asunto(s)
Diseño de Fármacos , Programas Informáticos , Algoritmos , Ligandos
3.
J Chem Inf Model ; 62(11): 2800-2810, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35653228

RESUMEN

The distributions of physicochemical property values, like the octanol-water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine's REAL Space, WuXi's GalaXi Space, and OTAVA's CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.


Asunto(s)
Técnicas Químicas Combinatorias , Bibliotecas de Moléculas Pequeñas
4.
J Chem Inf Model ; 62(3): 553-566, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35050621

RESUMEN

The set of chemical compounds shared by two or more chemical libraries is assessed routinely as means of comparing these libraries for various applications. Traditionally this is achieved by comparing the members of the chemical libraries individually for identity. This approach becomes impractical when operating on chemical libraries exceeding billions or even trillions of compounds in size. As a result, no such analysis exists for ultralarge chemical spaces like the Enamine REAL Space containing over 20 billion compounds. In this work, we present a novel tool called SpaceCompare for the overlap calculation of large, nonenumerable combinatorial fragment spaces. In contrast to existing methods, SpaceCompare utilizes topological fingerprints and the combinatorial character of these chemical spaces. The tool is able to determine the exact overlap of prominent spaces like Enamine's REAL Space, WuXi's GalaXi Space, and Otava's CHEMriya for the first time.


Asunto(s)
Técnicas Químicas Combinatorias , Bibliotecas de Moléculas Pequeñas , Bibliotecas de Moléculas Pequeñas/química
5.
J Chem Inf Model ; 61(1): 238-251, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33084338

RESUMEN

In similarity-driven virtual screening, molecular fingerprints are widely used to assess the similarity of all compounds contained in a chemical library to a query compound of interest. This similarity analysis is traditionally done for each member of the library individually. When encoding chemical spaces that surpass billions of compounds in size, it becomes impractical to enumerate all their products, let alone assess their similarity, deeming this approach impossible without investing a substantial amount of resources. In this work, we present a novel search algorithm named SpaceLight for topological fingerprint similarity searching in large, practically non-enumerable combinatorial fragment spaces. In contrast to existing methods, SpaceLight is able to utilize the combinatorial character of these chemical spaces for efficiency while maintaining a high correlation of the description of molecular similarity to well-known molecular fingerprints like ECFP. The resulting software is able to search prominent spaces like EnamineREAL with more than 10 billion compounds in seconds on a standard desktop computer.


Asunto(s)
Algoritmos , Programas Informáticos , Bibliotecas de Moléculas Pequeñas
6.
J Chem Inf Model ; 59(11): 4625-4635, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31652055

RESUMEN

Molecular fingerprints are an efficient and widely used method for similarity-driven virtual screening. Most fingerprint methods can be distinguished by the class of structural features considered. The Connected Subgraph Fingerprint (CSFP) overcomes this limitation and regards all structural features of a compound. This results in a more complete feature space and high adaptive potential to certain application scenarios. The novel descriptor surpasses widely used fingerprint methods in some cases and opens the way for topological search in combinatorial fragment spaces.


Asunto(s)
Modelos Químicos , Preparaciones Farmacéuticas/química , Algoritmos , Antibacterianos/química , Gráficos por Computador , Diseño de Fármacos , Estructura Molecular , Sulfamerazina/química , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA