Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (120)2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28190042

RESUMEN

Common problems in the processing of biological samples for observations with the scanning electron microscope (SEM) include cell collapse, treatment of samples from wet microenvironments and cell destruction. Using young floral tissues, oomycete cysts, and fungi spores (Agaricales) as examples, specific protocols to process delicate samples are described here that overcome some of the main challenges in sample treatment for image capture under the SEM. Floral meristems fixed with FAA (Formalin-Acetic-Alcohol) and processed with the Critical Point Dryer (CPD) did not display collapsed cellular walls or distorted organs. These results are crucial for the reconstruction of floral development. A similar CPD-based treatment of samples from wet microenvironments, such as the glutaraldehyde-fixed oomycete cysts, is optimal to test the differential growth of diagnostic characteristics (e.g., the cyst spines) on different types of substrates. Destruction of nurse cells attached to fungi spores was avoided after rehydration, dehydration, and the CPD treatment, an important step for further functional studies of these cells. The protocols detailed here represent low-cost and rapid alternatives for the acquisition of good-quality images to reconstruct growth processes and to study diagnostic characteristics.


Asunto(s)
Hongos/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Oomicetos/ultraestructura , Plantas/ultraestructura , Pared Celular/ultraestructura , Manejo de Especímenes
2.
Ann Bot ; 112(8): 1597-612, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23287557

RESUMEN

BACKGROUND AND AIMS: Most of the diversity in the pseudanthia of Asteraceae is based on the differential symmetry and sexuality of its flowers. In Anacyclus, where there are (1) homogamous capitula, with bisexual, mainly actinomorphic and pentamerous flowers; and (2) heterogamous capitula, with peripheral zygomorphic, trimerous and long-/short-rayed female flowers, the floral ontogeny was investigated to infer their origin. METHODS: Floral morphology and ontogeny were studied using scanning electron microscope and light microscope techniques. KEY RESULTS: Disc flowers, subtended by paleae, initiate acropetally. Perianth and androecium initiation is unidirectional/simultaneous. Late zygomorphy occurs by enlargement of the adaxial perianth lobes. In contrast, ray flowers, subtended by involucral bracts, initiate after the proximal disc buds, breaking the inflorescence acropetal pattern. Early zygomorphy is manifested through the fusion of the lateral and abaxial perianth lobes and the arrest of the adaxials. We report atypical phenotypes with peripheral 'trumpet' flowers from natural populations. The peripheral 'trumpet' buds initiate after disc flowers, but maintain an actinomorphic perianth. All phenotypes are compared and interpreted in the context of alternative scenarios for the origin of the capitulum and the perianth identity. CONCLUSIONS: Homogamous inflorescences display a uniform floral morphology and development, whereas the peripheral buds in heterogamous capitula display remarkable plasticity. Disc and ray flowers follow different floral developmental pathways. Peripheral zygomorphic flowers initiate after the proximal actinomorphic disc flowers, behaving as lateral independent units of the pseudanthial disc from inception. The perianth and the androecium are the most variable whorls across the different types of flowers, but their changes are not correlated. Lack of homology between hypanthial appendages and a calyx, and the perianth double-sided structure are discussed for Anacyclus together with potential causes of its ray flower plasticity.


Asunto(s)
Asteraceae/anatomía & histología , Asteraceae/crecimiento & desarrollo , Evolución Biológica , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Asteraceae/citología , Asteraceae/ultraestructura , Flores/citología , Flores/ultraestructura , Inflorescencia/anatomía & histología , Inflorescencia/citología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/ultraestructura , Fenotipo
3.
Cladistics ; 28(4): 393-421, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34836453

RESUMEN

Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Surianaceae)) as the presence of free filaments and marginal/ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.

4.
Artículo en Inglés | MEDLINE | ID: mdl-16448832

RESUMEN

This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.


Asunto(s)
Octodon/fisiología , Placenta/citología , Placentación/fisiología , Trofoblastos , Animales , Implantación del Embrión , Femenino , Edad Gestacional , Humanos , Parto/fisiología , Embarazo , Saco Vitelino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA