Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(7): 3819-3827, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015138

RESUMEN

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1-/- knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


Asunto(s)
Neurotransmisores/metabolismo , Sinaptotagmina I/metabolismo , Animales , Exocitosis , Ratones , Ratones Noqueados , Mutación Missense , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptotagmina I/genética
2.
Nat Commun ; 10(1): 3094, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300657

RESUMEN

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Receptores AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Lactante , Mutación con Pérdida de Función , Imagen por Resonancia Magnética , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Adulto Joven
3.
Am J Hum Genet ; 104(4): 721-730, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929742

RESUMEN

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.


Asunto(s)
Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Sinapsis/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Adolescente , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Epilepsia/metabolismo , Exocitosis , Femenino , Heterocigoto , Humanos , Lípidos/química , Imagen por Resonancia Magnética , Masculino , Fusión de Membrana , Trastornos del Movimiento/genética , Mutación , Trastornos del Neurodesarrollo/metabolismo , Neurotransmisores/metabolismo , Fenotipo , Dominios Proteicos , Proteínas R-SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/fisiología
4.
Proc Natl Acad Sci U S A ; 115(32): E7624-E7631, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038018

RESUMEN

Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.


Asunto(s)
Calcio/metabolismo , Exocitosis , Fusión de Membrana/fisiología , Multimerización de Proteína/fisiología , Sinaptotagmina I/metabolismo , Animales , Cationes Bivalentes/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/química , Microscopía Electrónica , Mutación , Células PC12 , Unión Proteica/fisiología , Ratas , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
5.
Hum Mutat ; 39(2): 187-192, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29127725

RESUMEN

We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD-box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient-derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies-associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss-of-function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD-box RNA helicase in neurological function.


Asunto(s)
ARN Helicasas DEAD-box/genética , Mutación/genética , ARN Helicasas/genética , Adulto , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Drosophila/genética , Femenino , Mutación del Sistema de Lectura/genética , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Adulto Joven
6.
Brain ; 140(11): 2820-2837, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053833

RESUMEN

Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy.


Asunto(s)
Encéfalo/patología , Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Médula Espinal/patología , Adolescente , Animales , Atrofia , Encéfalo/ultraestructura , Parálisis Bulbar Progresiva/metabolismo , Parálisis Bulbar Progresiva/patología , Niño , Preescolar , Citrato (si)-Sintasa/metabolismo , Drosophila melanogaster , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Técnicas In Vitro , Lactante , Locomoción/genética , Longevidad/genética , Masculino , Microscopía Electrónica , Vías Nerviosas , Riboflavina , Tractos Espinocerebelares/patología , Tractos Espinotalámicos/patología , Adulto Joven
7.
Elife ; 62017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28850328

RESUMEN

Previously, we showed that synaptotagmin1 (Syt1) forms Ca2+-sensitive ring-like oligomers on membranes containing acidic lipids and proposed a potential role in regulating neurotransmitter release (Zanetti et al., 2016). Here, we report that Syt1 assembles into similar ring-like oligomers in solution when triggered by naturally occurring polyphosphates (PIP2 and ATP) and magnesium ions (Mg2+). These soluble Syt1 rings were observed by electron microscopy and independently demonstrated and quantified using fluorescence correlation spectroscopy. Oligomerization is triggered when polyphosphates bind to the polylysine patch in C2B domain and is stabilized by Mg2+, which neutralizes the Ca2+-binding aspartic acids that likely contribute to the C2B interface in the oligomer. Overall, our data show that ring-like polymerization is an intrinsic property of Syt1 with reasonable affinity that can be triggered by the vesicle docking C2B-PIP2 interaction and raise the possibility that Syt1 rings could pre-form on the synaptic vesicle to facilitate docking.


Asunto(s)
Adenosina Trifosfato/química , Inositol 1,4,5-Trifosfato/química , Magnesio/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas Recombinantes de Fusión/química , Sinaptotagmina I/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Cationes Bivalentes , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Magnesio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
8.
Ann Neurol ; 81(4): 597-603, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28253535

RESUMEN

We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597-603.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Proteína 1 de Membrana Asociada a Vesículas/genética , Animales , Preescolar , Codón sin Sentido , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Homocigoto , Humanos , Israel , Kuwait , Masculino , Ratones , Ratones Transgénicos , Linaje
9.
Elife ; 62017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346138

RESUMEN

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).


Asunto(s)
Exocitosis , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Células HeLa , Hormonas/metabolismo , Humanos , Neurotransmisores/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(9): 2395-2400, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193892

RESUMEN

Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.


Asunto(s)
Potenciales de Acción , Ataxia/metabolismo , Hipocampo/metabolismo , Canal de Potasio Kv.1.1/genética , Miocimia/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/genética , Animales , Ataxia/genética , Ataxia/patología , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/patología , Canal de Potasio Kv.1.1/deficiencia , Ratones , Ratones Noqueados , Miocimia/genética , Miocimia/patología , Neuronas/patología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Cultivo Primario de Células , Subunidades de Proteína/deficiencia , Transmisión Sináptica
11.
Elife ; 52016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27434670

RESUMEN

We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca(2+)-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca(2+) involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca(2+) influx.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Multimerización de Proteína , Sinaptotagminas/metabolismo , Dominios C2 , Humanos , Microscopía Electrónica de Transmisión , Unión Proteica , Liposomas Unilamelares
12.
Langmuir ; 32(12): 3015-23, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26972604

RESUMEN

Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.


Asunto(s)
Apolipoproteínas E/química , Fusión de Membrana , Nanopartículas/química , Calcio , Colesterol/química , Dextranos , Dimiristoilfosfatidilcolina/química , Ditionita , Colorantes Fluorescentes/química , Liposomas , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositoles , Fosfatidilserinas/química , Proteína 25 Asociada a Sinaptosomas/química , Sintaxina 1/química , Proteína 2 de Membrana Asociada a Vesículas/química
13.
Exp Cell Res ; 318(5): 478-88, 2012 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-22248876

RESUMEN

Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.


Asunto(s)
Acrosoma/fisiología , Exocitosis , Proteínas de Unión al GTP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Acrosoma/metabolismo , Acrosoma/ultraestructura , Calcio/farmacología , Calcio/fisiología , Membrana Celular/metabolismo , Humanos , Masculino , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/genética , Permeabilidad , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...