Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mutat ; 41(5): 921-925, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31999386

RESUMEN

The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores Generales de Transcripción/genética , Alelos , Sustitución de Aminoácidos , Trastorno del Espectro Autista/diagnóstico , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Neurodesarrollo/diagnóstico , Eliminación de Secuencia
2.
Hum Mol Genet ; 28(9): 1548-1560, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624672

RESUMEN

Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) are related heterotetrameric complexes that associate with the cytosolic face of the trans-Golgi network and recycling endosomes, respectively. At these locations, GARP and EARP function to promote the fusion of endosome-derived transport carriers with their corresponding compartments. GARP and EARP share three subunits, VPS51, VPS52 and VPS53, and each has an additional complex-specific subunit, VPS54 or VPS50, respectively. The role of these complexes in human physiology, however, remains poorly understood. By exome sequencing, we have identified compound heterozygous mutations in the gene encoding the shared GARP/EARP subunit VPS51 in a 6-year-old patient with severe global developmental delay, microcephaly, hypotonia, epilepsy, cortical vision impairment, pontocerebellar abnormalities, failure to thrive, liver dysfunction, lower extremity edema and dysmorphic features. The mutation in one allele causes a frameshift that produces a longer but highly unstable protein that is degraded by the proteasome. In contrast, the other mutant allele produces a protein with a single amino acid substitution that is stable but assembles less efficiently with the other GARP/EARP subunits. Consequently, skin fibroblasts from the patient have reduced levels of fully assembled GARP and EARP complexes. Likely because of this deficiency, the patient's fibroblasts display altered distribution of the cation-independent mannose 6-phosphate receptor, which normally sorts acid hydrolases to lysosomes. Furthermore, a fraction of the patient's fibroblasts exhibits swelling of lysosomes. These findings thus identify a novel genetic locus for a neurodevelopmental disorder and highlight the critical importance of GARP/EARP function in cellular and organismal physiology.


Asunto(s)
Proteínas de la Membrana/genética , Complejos Multiproteicos/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Subunidades de Proteína/genética , Proteínas de Transporte Vesicular/genética , Transporte Biológico , Niño , Análisis Mutacional de ADN , Facies , Femenino , Fibroblastos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HeLa , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo
3.
Orphanet J Rare Dis ; 12(1): 121, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659154

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible. RESULTS: Clinical information on 21 individuals from 15 unrelated families with ITPR1 mutations was retrospectively collected using standardized questionnaires, including 11 previously unreported singletons and 2 new patients from a previously reported family. We describe the genetic, clinical and neuroimaging features of these patients to further characterize the clinical features of this rare condition and assess for any genotype-phenotype correlation for this disorder. Our cohort consisted of 9 males and 12 females, with ages ranging from 28 months to 49 years. Disease course was non-progressive with infantile-onset hypotonia and delays in motor and speech development. Gait ataxia was present in all individuals and 10 (48%) were not ambulating independently between the ages of 3-12 years of age. Mild-to-moderate cognitive impairment was present in 17 individuals (85%). Cerebellar atrophy developed after initial symptom presentation in 13 individuals (72%) and was not associated with disease progression or worsening functional impairment. We identified 12 different mutations including 6 novel mutations; 10 mutations were missense (with 4 present in >1 individual), 1 a splice site mutation leading to an in-frame insertion and 1 an in-frame deletion. No specific genotype-phenotype correlations were observed within our cohort. CONCLUSIONS: Our findings document significant clinical heterogeneity between individuals with SCA29 in a large cohort of molecularly confirmed cases. Based on the retrospective observed clinical features and disease course, we provide recommendations for management. Further research into the natural history of SCA29 through prospective studies is an important next step in better understanding the condition.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Ataxias Espinocerebelosas/genética , Adolescente , Adulto , Ataxia Cerebelosa/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA