Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39073885

RESUMEN

SUMMARY: Quantification of growth parameters and extracellular uptake and production fluxes is central in systems and synthetic biology. Fluxes can be estimated using various mathematical models by fitting time-course measurements of the concentration of cells and extracellular substrates and products. A single tool is available to non-computational biologists to calculate extracellular fluxes, but it is hardly interoperable and is limited to a single hard-coded growth model. We present our open-source flux calculation software, PhysioFit, which can be used with any growth model and is interoperable by design. PhysioFit includes some of the most common growth models, and advanced users can implement additional models to calculate extracellular fluxes and other growth parameters for metabolic systems or experimental setups that follow alternative kinetics. PhysioFit can be used as a Python library and offers a graphical user interface for intuitive use by end-users and a command-line interface to streamline integration into existing pipelines. AVAILABILITY AND IMPLEMENTATION: PhysioFit v3 is implemented in Python 3 and was tested on Windows, Unix, and MacOS platforms. The source code and the documentation are freely distributed under GPL3 license at https://github.com/MetaSys-LISBP/PhysioFit/ and https://physiofit.readthedocs.io/.


Asunto(s)
Programas Informáticos , Modelos Biológicos , Biología Sintética/métodos
2.
Cancer Res Commun ; 3(6): 1041-1056, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37377608

RESUMEN

Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Mesenquimatosas , Humanos , Glioblastoma/tratamiento farmacológico , Resistencia a Antineoplásicos , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Temozolomida/farmacología , Mitocondrias , Células Madre Neoplásicas
3.
Gut ; 72(6): 1081-1092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36167663

RESUMEN

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Neutrófilos/metabolismo , Supervivencia Celular , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo
4.
Metab Eng Commun ; 15: e00209, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36281261

RESUMEN

Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.

5.
Microbiome ; 10(1): 138, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36038937

RESUMEN

BACKGROUND: Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS: Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS: Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.


Asunto(s)
Aedes , Microbioma Gastrointestinal , Microbiota , Animales , Metabolismo de los Hidratos de Carbono , Femenino , Fructosa , Masculino
6.
Metabolomics ; 18(7): 41, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35713733

RESUMEN

INTRODUCTION: Stable isotope tracer studies are increasingly applied to explore metabolism from the detailed analysis of tracer incorporation into metabolites. Untargeted LC/MS approaches have recently emerged and provide potent methods for expanding the dimension and complexity of the metabolic networks that can be investigated. A number of software tools have been developed to process the highly complex MS data collected in such studies; however, a method to optimize the extraction of valuable isotopic data is lacking. OBJECTIVES: To develop and validate a method to optimize automated data processing for untargeted MS-based isotopic tracing investigations of metabolism. METHODS: The method is based on the application of a suitable reference material to rationally perform parameter optimization throughout the complete data processing workflow. It was applied in the context of 13C-labelling experiments and with two different software, namely geoRge and X13CMS. It was illustrated with the study of a E. coli mutant impaired for central metabolism. RESULTS: The optimization methodology provided significant gain in the number and quality of extracted isotopic data, independently of the software considered. Pascal triangle samples are well suited for such purpose since they allow both the identification of analytical issues and optimization of data processing at the same time. CONCLUSION: The proposed method maximizes the biological value of untargeted MS-based isotopic tracing investigations by revealing the full metabolic information that is encoded in the labelling patterns of metabolites.


Asunto(s)
Escherichia coli , Metabolómica , Cromatografía Liquida/métodos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos
7.
Metabolites ; 11(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926117

RESUMEN

We have developed a robust workflow to measure high-resolution fluxotypes (metabolic flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved by optimizing and automating the whole high-throughput fluxomics process and integrating all relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes in the central carbon metabolism in a fully automated manner. It was applied to investigate the glucose fluxotypes of 180 Escherichia coli strains deleted for y-genes. Since the products of these y-genes potentially play a role in a variety of metabolic processes, the experiments were designed to be agnostic as to their potential metabolic impact. The obtained data highlight the robustness of E. coli's central metabolism to y-gene deletion. For two y-genes, deletion resulted in significant changes in carbon and energy fluxes, demonstrating the involvement of the corresponding y-gene products in metabolic function or regulation. This work also introduces novel metrics to measure the actual scope and quality of high-throughput fluxomics investigations.

8.
J Exp Med ; 218(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760042

RESUMEN

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Asunto(s)
Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide/genética , Mitocondrias/genética , Mutación , Enfermedad Aguda , Aminopiridinas/farmacología , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Células HL-60 , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Triazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Sci Rep ; 11(1): 2474, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510212

RESUMEN

The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.


Asunto(s)
Proteínas Bacterianas , Haptenos/biosíntesis , Oligosacáridos/biosíntesis , Ingeniería de Proteínas , Shigella flexneri/metabolismo , Sacarasa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Haptenos/genética , Oligosacáridos/genética , Shigella flexneri/genética , Sacarasa/genética , Sacarasa/metabolismo
10.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393495

RESUMEN

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/enzimología , Subunidad alfa de la Proteína Trifuncional Mitocondrial , Proteínas de Neoplasias , Trimetazidina/farmacología , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Subunidad alfa de la Proteína Trifuncional Mitocondrial/antagonistas & inhibidores , Subunidad alfa de la Proteína Trifuncional Mitocondrial/biosíntesis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Oxidación-Reducción
11.
Artículo en Inglés | MEDLINE | ID: mdl-33383499

RESUMEN

Opines are low-molecular-weight metabolites specifically biosynthesized by agrobacteria-transformed plant cells when plants are struck by crown gall and hairy root diseases, which cause uncontrolled tissue overgrowth. Transferred DNA is sustainably incorporated into the genomes of the transformed plant cells, so that opines constitute a persistent biomarker of plant infection by pathogenic agrobacteria and can be targeted for crown gall/hairy root disease diagnosis. We developed a general, rapid, specific and sensitive analytical method for overall opine detection using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-MS-QTOF), with easy preparation of samples. Based on MS, MS/MS and chromatography data, the detection selectivity of a wide range of standard opines was validated in pure solution and in different plant extracts. The method was successfully used to detect different structural types of opines, including opines for which standard compounds are unavailable, in tumors or hairy roots induced by pathogenic strains. As the method can detect a wide range of opines in a single run, it represents a powerful tool for plant gall analysis and crown gall/hairy root disease diagnosis. Using an appropriate dilution of plant extract and a matrix-based calibration curve, the quantification ability of the method was validated for three opines belonging to different families (nopaline, octopine, mannopine), which were accurately quantified in plant tissue extracts.


Asunto(s)
Arginina/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Manitol/análogos & derivados , Tumores de Planta , Espectrometría de Masa por Ionización de Electrospray/métodos , Agrobacterium , Arginina/análisis , Biomarcadores/análisis , Manitol/análisis , Enfermedades de las Plantas , Raíces de Plantas/química , Reproducibilidad de los Resultados
12.
Artículo en Inglés | MEDLINE | ID: mdl-33195110

RESUMEN

Polylactic acid is a plastic polymer widely used in different applications from printing filaments for 3D printer to mulching films in agriculture, packaging materials, etc. Here, we report the production of poly-D-lactic acid (PDLA) in an engineered yeast strain of Yarrowia lipolytica. Firstly, the pathway for lactic acid consumption in this yeast was identified and interrupted. Then, the heterologous pathway for PDLA production, which contains a propionyl-CoA transferase (PCT) converting lactic acid into lactyl-CoA, and an evolved polyhydroxyalkanoic acid (PHA) synthase polymerizing lactyl-CoA, was introduced into the engineered strain. Among the different PCT proteins that were expressed in Y. lipolytica, the Clostridium propionicum PCT exhibited the highest efficiency in conversion of D-lactic acid to D-lactyl-CoA. We further evaluated the lactyl-CoA and PDLA productions by expressing this PCT and a variant of Pseudomonas aeruginosa PHA synthase at different subcellular localizations. The best PDLA production was obtained by expressing the PCT in the cytosol and the variant of PHA synthase in peroxisome. PDLA homopolymer accumulation in the cell reached 26 mg/g-DCW, and the molecular weights of the polymer (Mw = 50.5 × 103 g/mol and Mn = 12.5 × 103 g/mol) were among the highest reported for an in vivo production.

13.
Metabolites ; 10(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825089

RESUMEN

The functional understanding of metabolic changes requires both a significant investigation into metabolic pathways, as enabled by global metabolomics and lipidomics approaches, and the comprehensive and accurate exploration of specific key pathways. To answer this pivotal challenge, we propose an optimized approach, which combines an efficient sample preparation, aiming to reduce the variability, with a biphasic extraction method, where both the aqueous and organic phases of the same sample are used for mass spectrometry analyses. We demonstrated that this double extraction protocol allows working with one single sample without decreasing the metabolome and lipidome coverage. It enables the targeted analysis of 40 polar metabolites and 82 lipids, together with the absolute quantification of 32 polar metabolites, providing comprehensive coverage and quantitative measurement of the metabolites involved in central carbon energy pathways. With this method, we evidenced modulations of several lipids, amino acids, and energy metabolites in HepaRG cells exposed to fenofibrate, a model hepatic toxicant, and metabolic modulator. This new protocol is particularly relevant for experiments involving limited amounts of biological material and for functional metabolic explorations and is thus of particular interest for studies aiming to decipher the effects and modes of action of metabolic disrupting compounds.

14.
Cancer Discov ; 10(10): 1544-1565, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32641297

RESUMEN

Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adaptive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new residual disease marker and a promising therapeutic target to improve chemotherapy response in AML. SIGNIFICANCE: Extracellular ATP and CD39-P2RY13-cAMP-OxPHOS axis are key regulators of cytarabine resistance, offering a new promising therapeutic strategy in AML.This article is highlighted in the In This Issue feature, p. 1426.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Citarabina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mitocondrias/metabolismo , Citarabina/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad
15.
Sci Transl Med ; 12(547)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522803

RESUMEN

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


Asunto(s)
Antineoplásicos , Liposarcoma , Antineoplásicos/uso terapéutico , Humanos , Liposarcoma/tratamiento farmacológico , Liposarcoma/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Serina/uso terapéutico , Proteína p53 Supresora de Tumor/genética
16.
Metabolites ; 10(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295054

RESUMEN

Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.

17.
Anal Chem ; 92(8): 5890-5896, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32212637

RESUMEN

Studies of the topology, functioning, and regulation of metabolic systems are based on two main types of information that can be measured by mass spectrometry: the (absolute or relative) concentration of metabolites and their isotope incorporation in 13C-labeling experiments. These data are currently obtained from two independent experiments because the 13C-labeled internal standard (IS) used to determine the concentration of a given metabolite overlaps the 13C-mass fractions from which its 13C-isotopologue distribution (CID) is quantified. Here, we developed a generic method with a dedicated processing workflow to obtain these two sets of information simultaneously in a unique sample collected from a single cultivation, thereby reducing by a factor of 2 both the number of cultivations to perform and the number of samples to collect, prepare, and analyze. The proposed approach is based on an IS labeled with other isotope(s) that can be resolved from the 13C-mass fractions of interest. As proof-of-principle, we analyzed amino acids using a doubly labeled 15N13C-cell extract as IS. Extensive evaluation of the proposed approach shows a similar accuracy and precision compared to state-of-the-art approaches. We demonstrate the value of this approach by investigating the dynamic response of amino acids metabolism in mammalian cells upon activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a key component of the unfolded protein response. Integration of metabolite concentrations and isotopic profiles reveals a reduced de novo biosynthesis of amino acids upon PERK activation. The proposed approach is generic and can be applied to other (micro)organisms, analytical platforms, isotopic tracers, or classes of metabolites.


Asunto(s)
Aminoácidos/análisis , Aminoácidos/metabolismo , Animales , Isótopos de Carbono , Células Cultivadas , Cromatografía Líquida de Alta Presión , Marcaje Isotópico , Espectrometría de Masas , Isótopos de Nitrógeno , Ratas
18.
Metabolomics ; 15(9): 115, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31435826

RESUMEN

INTRODUCTION: Isoprenoids are amongst the most abundant and diverse biological molecules and are involved in a broad range of biological functions. Functional understanding of their biosynthesis is thus key in many fundamental and applicative fields, including systems biology, medicine and biotechnology. However, available methods do not yet allow accurate quantification and tracing of stable isotopes incorporation for all the isoprenoids precursors. OBJECTIVES: We developed and validated a complete methodology for quantitative metabolomics and isotopologue profiling of isoprenoid precursors in the yeast Saccharomyces cerevisiae. METHODS: This workflow covers all the experimental and computational steps from sample collection and preparation to data acquisition and processing. It also includes a novel quantification method based on liquid chromatography coupled to high-resolution mass spectrometry. Method validation followed the Metabolomics Standards Initiative guidelines. RESULTS: This workflow ensures accurate absolute quantification (RSD < 20%) of all mevalonate and prenyl pyrophosphates intermediates with a high sensitivity over a large linear range (from 0.1 to 50 pmol). In addition, we demonstrate that this workflow brings crucial information to design more efficient phytoene producers. Results indicate stable turnover rates of prenyl pyrophosphate intermediates in the constructed strains and provide quantitative information on the change of the biosynthetic flux of phytoene precursors. CONCLUSION: This methodology fills one of the last technical gaps for functional studies of isoprenoids biosynthesis and should be applicable to other eukaryotic and prokaryotic (micro)organisms after adaptation of some organism-dependent steps. This methodology also opens the way to 13C-metabolic flux analysis of isoprenoid biosynthesis.


Asunto(s)
Metabolómica/métodos , Terpenos/metabolismo , Difosfatos/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Metaboloma , Metabolómica/normas , Ácido Mevalónico/metabolismo , Neopreno/metabolismo , Saccharomyces cerevisiae
19.
Bioinformatics ; 35(21): 4484-4487, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30903185

RESUMEN

SUMMARY: Mass spectrometry (MS) is widely used for isotopic studies of metabolism and other (bio)chemical processes. Quantitative applications in systems and synthetic biology require to correct the raw MS data for the contribution of naturally occurring isotopes. Several tools are available to correct low-resolution MS data, and recent developments made substantial improvements by introducing resolution-dependent correction methods, hence opening the way to the correction of high-resolution MS (HRMS) data. Nevertheless, current HRMS correction methods partly fail to determine which isotopic species are resolved from the tracer isotopologues and should thus be corrected. We present an updated version of our isotope correction software (IsoCor) with a novel correction algorithm which ensures to accurately exploit any chemical species with any isotopic tracer, at any MS resolution. IsoCor v2 also includes a novel graphical user interface for intuitive use by end-users and a command-line interface to streamline integration into existing pipelines. AVAILABILITY AND IMPLEMENTATION: IsoCor v2 is implemented in Python 3 and was tested on Windows, Unix and MacOS platforms. The source code and the documentation are freely distributed under GPL3 license at https://github.com/MetaSys-LISBP/IsoCor/ and https://isocor.readthedocs.io/.


Asunto(s)
Programas Informáticos , Algoritmos , Marcaje Isotópico , Isótopos , Espectrometría de Masas , Biología Sintética
20.
Cell Metab ; 29(1): 124-140.e10, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30293773

RESUMEN

Dysregulation of extracellular matrix (ECM) deposition and cellular metabolism promotes tumor aggressiveness by sustaining the activity of key growth, invasion, and survival pathways. Yet mechanisms by which biophysical properties of ECM relate to metabolic processes and tumor progression remain undefined. In both cancer cells and carcinoma-associated fibroblasts (CAFs), we found that ECM stiffening mechanoactivates glycolysis and glutamine metabolism and thus coordinates non-essential amino acid flux within the tumor niche. Specifically, we demonstrate a metabolic crosstalk between CAF and cancer cells in which CAF-derived aspartate sustains cancer cell proliferation, while cancer cell-derived glutamate balances the redox state of CAFs to promote ECM remodeling. Collectively, our findings link mechanical stimuli to dysregulated tumor metabolism and thereby highlight a new metabolic network within tumors in which diverse fuel sources are used to promote growth and aggressiveness. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in cancer.


Asunto(s)
Ácido Aspártico/metabolismo , Neoplasias de la Mama/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma/metabolismo , Ácido Glutámico/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Matriz Extracelular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA