Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Stem Cell Res Ther ; 11(1): 453, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109263

RESUMEN

Primary immunodeficiency diseases (PIDs) are rare diseases that are characterized by genetic mutations that damage immunological function, defense, or both. Some of these rare diseases are caused by aberrations in the normal development of natural killer cells (NKs) or affect their lytic synapse. The pathogenesis of these types of diseases as well as the processes underlying target recognition by human NK cells is not well understood. Utilizing induced pluripotent stem cells (iPSCs) will aid in the study of human disorders, especially in the PIDs with defects in NK cells for PID disease modeling. This, together with genome editing technology, makes it possible for us to facilitate the discovery of future therapeutics and/or cell therapy treatments for these patients, because, to date, the only curative treatment available in the most severe cases is hematopoietic stem cell transplantation (HSCT). Recent progress in gene editing technology using CRISPR/Cas9 has significantly increased our capability to precisely modify target sites in the human genome. Among the many tools available for us to study human PIDs, disease- and patient-specific iPSCs together with gene editing offer unique and exceptional methodologies to gain deeper and more thorough understanding of these diseases as well as develop possible alternative treatment strategies. In this review, we will discuss some immunodeficiency disorders affecting NK cell function, such as classical NK deficiencies (CNKD), functional NK deficiencies (FNKD), and PIDs with involving NK cells as well as strategies to model and correct these diseases for further study and possible avenues for future therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades de Inmunodeficiencia Primaria , Edición Génica , Humanos , Células Asesinas Naturales , Trasplante de Células Madre
3.
Reprod Domest Anim ; 51 Suppl 2: 18-24, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27762052

RESUMEN

More than eighteen years have passed since the first derivation of human embryonic stem cells (ESCs), but their clinical use is still met with several challenges, such as ethical concerns regarding the need of human embryos, tissue rejection after transplantation and tumour formation. The generation of human induced pluripotent stem cells (iPSCs) enables the access to patient-derived pluripotent stem cells (PSCs) and opens the door for personalized medicine as tissues/organs can potentially be generated from the same genetic background as the patient recipients, thus avoiding immune rejections or complication of immunosuppression strategies. In this regard, successful replacement, or augmentation, of the function of damaged tissue by patient-derived differentiated stem cells provides a promising cell replacement therapy for many devastating human diseases. Although human iPSCs can proliferate unlimitedly in culture and harbour the potential to generate all cell types in the adult body, currently, the functionality of differentiated cells is limited. An alternative strategy to realize the full potential of human iPSC for regenerative medicine is the in vivo tissue generation in large animal species via interspecies blastocyst complementation. As this technology is still in its infancy and there remains more questions than answers, thus in this review, we mainly focus the discussion on the conceptual framework, the emerging technologies and recent advances involved with interspecies blastocyst complementation, and will refer the readers to other more in-depth reviews on dynamic pluripotent stem cell states, genome editing and interspecies chimeras. Likewise, other emerging alternatives to combat the growing shortage of human organs, such as xenotransplantation or tissue engineering, topics that has been extensively reviewed, will not be covered here.


Asunto(s)
Blastocisto/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Medicina Regenerativa/métodos , Animales , Blastocisto/citología , Diferenciación Celular , Proliferación Celular , Edición Génica , Humanos , Técnicas de Cultivo de Órganos , Medicina de Precisión , Sus scrofa
4.
Stem Cells ; 34(9): 2418-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27300161

RESUMEN

Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética , Células Germinativas/citología , Células Germinativas/metabolismo , Gónadas/citología , Animales , Cromatina/metabolismo , Metilación de ADN/genética , Femenino , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Ratones , Modelos Biológicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Especificidad de la Especie , Factores de Transcripción/metabolismo
5.
Mol Psychiatry ; 21(9): 1215-24, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26239292

RESUMEN

With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD. We found in adult nasal olfactory stem cells of 11 adults with ASD that MOCOS is downregulated in most of them when compared with 11 age- and gender-matched control adults without any neuropsychiatric disorders. Genetic approaches using in vivo and in vitro engineered models converge to indicate that altered expression of MOCOS results in neurotransmission and synaptic defects. Furthermore, we found that MOCOS misexpression induces increased oxidative-stress sensitivity. Our results demonstrate that altered MOCOS expression is likely to have an impact on neurodevelopment and neurotransmission, and may explain comorbid conditions, including gastrointestinal disorders. We anticipate our discovery to be a fresh starting point for the study on the roles of MOCOS in brain development and its functional implications in ASD clinical symptoms. Moreover, our study suggests the possible development of new diagnostic tests based on MOCOS expression, and paves the way for drug screening targeting MOCOS and/or the purine metabolism to ultimately develop novel treatments in ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Células Madre/metabolismo , Sulfurtransferasas/metabolismo , Adulto , Animales , Trastorno del Espectro Autista/genética , Caenorhabditis elegans , Femenino , Francia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Células Madre/fisiología , Sulfurtransferasas/uso terapéutico
6.
Sci Rep ; 5: 16400, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563344

RESUMEN

Autologous chondrocyte implantation (ACI) depends on the quality and quantity of implanted cells and is hindered by the fact that chondrocytes cultured for long periods of time undergo dedifferentiation. Here we have developed a reproducible and efficient chondrogenic protocol to redifferentiate chondrocytes isolated from osteoarthritis (OA) patients. We used morphological, histological and immunological analysis together with a RT-PCR detection of collagen I and collagen II gene expression to show that chondrocytes isolated from articular cartilage biopsies of patients and subjected to long-term culture undergo dedifferentiation and that these cells can be redifferentiated following treatment with the chimeric Activin A/BMP2 ligand AB235. Examination of AB235-treated cell pellets in both in vitro and in vivo experiments revealed that redifferentiated chondrocytes synthesized a cartilage-specific extracellular matrix (ECM), primarily consisting of vertically-orientated collagen fibres and cartilage-specific proteoglycans. AB235-treated cell pellets also integrated into the surrounding subcutaneous tissue following transplantation in mice as demonstrated by their dramatic increase in size while non-treated control pellets disintegrated upon transplantation. Thus, our findings describe an effective protocol for the promotion of redifferentiation of autologous chondrocytes obtained from OA patients and the formation of a cartilage-like ECM that can integrate into the surrounding tissue in vivo.


Asunto(s)
Activinas/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Condrocitos/patología , Activinas/genética , Anciano , Animales , Proteína Morfogenética Ósea 2/genética , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/trasplante , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Osteoartritis/patología , Osteoartritis/terapia , Proteoglicanos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Trasplante Autólogo , Trasplante Heterólogo
7.
Stem Cells ; 32(2): 436-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24420904

RESUMEN

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2(Δ) (27/) (Δ27)), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2(Δ) (27/) (Δ27) induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2(Δ) (27/) (Δ27) iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2(Δ) (27/) (Δ27) mouse embryonic fibroblasts. Gene-corrected Brca2(Δ) (27/) (Δ27) iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2(Δ) (27/) (Δ27) recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2(Δ) (27/) (Δ) (27) iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.


Asunto(s)
Proteína BRCA2/genética , Anemia de Fanconi/genética , Terapia Genética , Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas/citología , Animales , Proteína BRCA2/biosíntesis , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular , Daño del ADN/genética , Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones
8.
Cell Death Dis ; 4: e464, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23328671

RESUMEN

Cell fate decision is a critical step during physiological development when embryonic stem cells commit to either becoming adult stem cells or somatic cells. Recent advances in reprogramming demonstrate that a similar set of transcription factors (TFs), which are important for maintaining the pluripotent state of stem cells, can also reprogram somatic cells to induced pluripotent stem cells (iPSCs). In addition, trans-differentiation, which entails the use of different sets of defined factors, whereby one type of somatic cell can be directly converted into another and even to cell types from different germ layers has become a parallel widely used approach for switching cell fate. All these progresses have provided powerful tools to manipulate cells for basic science and therapeutic purposes. Besides protein-based factors, non-coding RNAs (ncRNAs), particularly microRNAs and long ncRNAs, are also involved in cell fate determination, including maintaining self-renewal of pluripotent stem cells and directing cell lineage. Targeting specific ncRNAs represents an alternative promising approach to optimize cell-based disease modeling and regenerative therapy. Here we focus on recent advances of ncRNAs in cell fate decision, including ncRNA-induced iPSCs and lineage conversion. We also discuss some underlying mechanisms and implications in molecular pathogenesis of human diseases.


Asunto(s)
ARN no Traducido/metabolismo , Animales , Linaje de la Célula , Transdiferenciación Celular , Reprogramación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , ARN no Traducido/genética , Medicina Regenerativa , Factores de Transcripción/metabolismo
9.
Oncogene ; 31(39): 4333-42, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22179836

RESUMEN

Angiogenesis is essential for development and tumor progression. With the aim of identifying new compound inhibitors of the angiogenesis process, we used an established enhanced green fluorescent protein-transgenic zebrafish line to develop an automated assay that enables high-throughput screening of compound libraries in a whole-organism setting. Using this system, we have identified novel kinase inhibitor compounds that show anti-angiogenic properties in both zebrafish in-vivo system and in human endothelial cell in-vitro angiogenesis models. Furthermore, we have determined the kinase target of these compounds and have identified and validated a previously uncharacterized involvement of phosphorylase kinase subunit G1 (PhKG1) in angiogenesis in vivo. In addition, we have found that PhKG1 is upregulated in human tumor samples and that aberrations in gene copy number of PhK subunits are a common feature of human tumors. Our results provide a novel insight into the angiogenesis process, as well as identify new potential targets for anti-angiogenic therapies.


Asunto(s)
Inhibidores de la Angiogénesis/aislamiento & purificación , Terapia Molecular Dirigida , Neovascularización Patológica/tratamiento farmacológico , Fosforilasa Quinasa/antagonistas & inhibidores , Pez Cebra , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Línea Celular , Evaluación Preclínica de Medicamentos , Células Endoteliales/efectos de los fármacos , Dosificación de Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Fosforilasa Quinasa/genética , Regulación hacia Arriba
10.
Hum Gene Ther ; 23(1): 56-69, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21877920

RESUMEN

Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) offer great hope for in vitro modeling of Parkinson's disease (PD), as well as for designing cell-replacement therapies. To realize these opportunities, there is an urgent need to develop efficient protocols for the directed differentiation of hESC/iPSC into dopamine (DA) neurons with the specific characteristics of the cell population lost to PD, i.e., A9-subtype ventral midbrain DA neurons. Here we use lentiviral vectors to drive the expression of LMX1A, which encodes a transcription factor critical for ventral midbrain identity, specifically in neural progenitor cells. We show that clonal lines of hESC engineered to contain one or two copies of this lentiviral vector retain long-term self-renewing ability and pluripotent differentiation capacity. Greater than 60% of all neurons generated from LMX1A-engineered hESC were ventral midbrain DA neurons of the A9 subtype, compared with ∼10% in green fluorescent protein-engineered controls, as judged by specific marker expression and functional analyses. Moreover, DA neuron precursors differentiated from LMX1A-engineered hESC were able to survive and differentiate when grafted into the brain of adult mice. Finally, we provide evidence that LMX1A overexpression similarly increases the yield of DA neuron differentiation from human iPSC. Taken together, our data show that stable genetic engineering of hESC/iPSC with lentiviral vectors driving controlled expression of LMX1A is an efficient way to generate enriched populations of human A9-subtype ventral midbrain DA neurons, which should prove useful for modeling PD and may be helpful for designing future cell-replacement strategies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Proteínas con Homeodominio LIM/metabolismo , Lentivirus/metabolismo , Factores de Transcripción/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/metabolismo , Ingeniería Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas con Homeodominio LIM/genética , Lentivirus/genética , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Desnudos , Ratones SCID , Plásmidos/genética , Plásmidos/metabolismo , Trasplante de Células Madre , Teratoma/patología , Factores de Transcripción/genética , Transgenes
11.
Cell Death Differ ; 19(1): 132-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21660050

RESUMEN

The death inducer obliterator (Dido) locus encodes three protein isoforms, of which Dido3 is the largest and most broadly expressed. Dido3 is a nuclear protein that forms part of the spindle assembly checkpoint (SAC) and is necessary for correct chromosome segregation in somatic and germ cells. Here we report that specific ablation of Dido3 function in mice causes lethal developmental defects at the onset of gastrulation. Although these defects are associated with centrosome amplification, spindle malformation and a DNA damage response, we provide evidence that embryonic lethality of the Dido3 mutation cannot be explained by its impact on chromosome segregation alone. We show that loss of Dido3 expression compromises differentiation of embryonic stem cells in vitro and of epiblast cells in vivo, resulting in early embryonic death at around day 8.5 of gestation. Close analysis of Dido3 mutant embryoid bodies indicates that ablation of Dido3, rather than producing a generalized differentiation blockade, delays the onset of lineage commitment at the primitive endoderm specification stage. The dual role of Dido3 in chromosome segregation and stem cell differentiation supports the implication of SAC components in stem cell fate decisions.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Centrosoma/metabolismo , Daño del ADN/genética , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/embriología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/crecimiento & desarrollo , Ratones , Mutación
12.
Stem Cells ; 29(8): 1186-95, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21681858

RESUMEN

Gamete failure-derived infertility affects millions of people worldwide; for many patients, gamete donation by unrelated donors is the only available treatment. Embryonic stem cells (ESCs) can differentiate in vitro into germ-like cells, but they are genetically unrelated to the patient. Using an in vitro protocol that aims at recapitulating development, we have achieved, for the first time, complete differentiation of human induced pluripotent stem cells (hiPSCs) to postmeiotic cells. Unlike previous reports using human ESCs, postmeiotic cells arose without the over-expression of germline related transcription factors. Moreover, we consistently obtained haploid cells from hiPSCs of different origin (keratinocytes and cord blood), produced with a different number of transcription factors, and of both genetic sexes, suggesting the independence of our approach from the epigenetic memory of the reprogrammed somatic cells. Our work brings us closer to the production of personalized human gametes in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Meiosis , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD/metabolismo , Benzotiazoles/farmacología , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colforsina/farmacología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Metilación de ADN , Proteínas de Unión al ADN , Factor 2 de Crecimiento de Fibroblastos/farmacología , Expresión Génica , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Cariotipificación , Factor Inhibidor de Leucemia/farmacología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Nestina , Proteínas Nucleares/metabolismo , Ploidias , Regiones Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo , Triazoles/farmacología , Vimentina/metabolismo
15.
Hum Reprod ; 25(1): 158-67, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19815622

RESUMEN

BACKGROUND: Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the derivation of ES-like cells from adult human testis. METHODS: Testis material was donated for research by four men undergoing bilateral castration as part of prostate cancer treatment. Testicular cells were cultured using StemPro medium. Colonies that appeared sharp edged and compact were collected and subcultured under hES-specific conditions. Molecular characterization of these colonies was performed using RT-PCR and immunohistochemistry. (Epi)genetic stability was tested using bisulphite sequencing and karyotype analysis. Directed differentiation protocols in vitro were performed to investigate the potency of these cells and the cells were injected into immunocompromised mice to investigate their tumorigenicity. RESULTS: In testicular cell cultures from all four men, sharp-edged and compact colonies appeared between 3 and 8 weeks. Subcultured cells from these colonies showed alkaline phosphatase activity and expressed hES cell-specific genes (Pou5f1, Sox2, Cripto1, Dnmt3b), proteins and carbohydrate antigens (POU5F1, NANOG, SOX2 and TRA-1-60, TRA-1-81, SSEA4). These ES-like cells were able to differentiate in vitro into derivatives of all three germ layers including neural, epithelial, osteogenic, myogenic, adipocyte and pancreatic lineages. The pancreatic beta cells were able to produce insulin in response to glucose and osteogenic-differentiated cells showed deposition of phosphate and calcium, demonstrating their functional capacity. Although we observed small areas with differentiated cell types of human origin, we never observed extensive teratomas upon injection of testis-derived ES-like cells into immunocompromised mice. CONCLUSIONS: Multipotent cells can be established from adult human testis. Their easy accessibility and ethical acceptability as well as their non-tumorigenic and autogenic nature make these cells an attractive alternative to human ES cells for future stem cell therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Embrionarias/citología , Células Madre Multipotentes/citología , Testículo/citología , Anciano , Anciano de 80 o más Años , Animales , Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/metabolismo , Humanos , Cariotipificación , Masculino , Ratones , Persona de Mediana Edad , Células Madre Multipotentes/metabolismo
16.
Oncogene ; 28(24): 2324-36, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19421146

RESUMEN

Cripto is a developmental oncoprotein that signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Smad2/3 pathways. However, the molecular basis for Cripto coupling to these pathways during embryogenesis and tumorigenesis is not fully understood. In this regard, we recently demonstrated that Cripto forms a cell surface complex with the HSP70 family member glucose-regulated protein-78 (GRP78). Here, we provide novel functional evidence demonstrating that cell surface GRP78 is a necessary mediator of Cripto signaling in human tumor, mammary epithelial and embryonic stem cells. We show that targeted disruption of the cell surface Cripto/GRP78 complex using shRNAs or GRP78 immunoneutralization precludes Cripto activation of MAPK/PI3K pathways and modulation of activin-A, activin-B, Nodal and transforming growth factor-beta1 signaling. We further demonstrate that blockade of Cripto binding to cell surface GRP78 prevents Cripto from increasing cellular proliferation, downregulating E-Cadherin, decreasing cell adhesion and promoting pro-proliferative responses to activin-A and Nodal. Thus, disrupting the Cripto/GRP78 binding interface blocks oncogenic Cripto signaling and may have important therapeutic value in the treatment of cancer.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Activinas/farmacología , Anticuerpos/farmacología , Western Blotting , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Factor de Crecimiento Epidérmico/genética , Proteínas Ligadas a GPI , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular , Luciferasas/genética , Luciferasas/metabolismo , Glicoproteínas de Membrana/genética , Microscopía Confocal , Modelos Biológicos , Proteínas de Neoplasias/genética , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , Ensayo de Unión Radioligante , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-19028986

RESUMEN

Human embryonic stem (hES) cells represent a potential source for cell replacement therapy of many degenerative diseases. Most frequently, hES cell lines are derived from surplus embryos from assisted reproduction cycles, independent of their quality or morphology. Here, we show that hES cell lines can be obtained from poor-quality blastocysts with the same efficiency as that obtained from good- or intermediate-quality blastocysts. Furthermore, we show that the self-renewal, pluripotency, and differentiation ability of hES cell lines derived from either source are comparable. Finally, we present a simple and reproducible embryoid body-based protocol for the differentiation of hES cells into functional cardiomyocytes. The five new hES cell lines derived here should widen the spectrum of available resources for investigating the biology of hES cells and advancing toward efficient strategies of regenerative medicine.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Prueba de Histocompatibilidad , Humanos , Cariotipificación , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología , Células Madre Pluripotentes/metabolismo
18.
Dev Cell ; 1(3): 423-34, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11702953

RESUMEN

Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning.


Asunto(s)
Embrión de Mamíferos/fisiología , Inducción Embrionaria/fisiología , Extremidades/embriología , Cabeza/embriología , Morfogénesis/fisiología , Proteínas/metabolismo , Proteínas de Pez Cebra , Animales , Biomarcadores , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Encéfalo/embriología , Embrión de Pollo , Embrión de Mamíferos/ultraestructura , Extremidades/crecimiento & desarrollo , Marcación de Gen , Cabeza/crecimiento & desarrollo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Wnt
19.
Annu Rev Cell Dev Biol ; 17: 87-132, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11687485

RESUMEN

Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.


Asunto(s)
Tipificación del Cuerpo/genética , Extremidades/embriología , Transactivadores/genética , Animales , Diferenciación Celular/genética , Ectodermo , Inducción Embrionaria , Epitelio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Organizadores Embrionarios , Transducción de Señal
20.
Development ; 128(16): 3189-95, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11688567

RESUMEN

Expression of the Nodal gene, which encodes a member of the TGFbeta superfamily of secreted factors, localizes to the left side of the developing embryo in all vertebrates examined so far. This asymmetric pattern correlates with normal development of the left-right axis. We now show that the Wnt and PKA signaling pathways control left-right determination in the chick embryo through Nodal. A Wnt/beta-catenin pathway controls Nodal expression in and around Hensen's node, without affecting the upstream regulators Sonic hedgehog, Car and Fibroblast Growth Factor 8. Transcription of Nodal is also positively regulated by a protein kinase A-dependent pathway. Both the adhesion protein N-cadherin and PKI (an endogenous protein kinase A inhibitor) are localized to the right side of the node and may contribute to restrict Nodal activation by Wnt signaling and PKA to the left side of the node.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Proteínas Proto-Oncogénicas/fisiología , Factor de Crecimiento Transformador beta/biosíntesis , Proteínas de Pez Cebra , Fosfatasa Alcalina/metabolismo , Animales , Cadherinas/biosíntesis , Moléculas de Adhesión Celular/biosíntesis , Embrión de Pollo , Inducción Embrionaria , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Modelos Biológicos , Proteína Nodal , Transducción de Señal , Transactivadores/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...