Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589445

RESUMEN

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Asunto(s)
Proteínas de Escherichia coli , Factores de Transcripción , Factores de Transcripción/metabolismo , Transcripción Genética , Transactivadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN
2.
Methods Enzymol ; 675: 207-233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36220271

RESUMEN

Transcription is the first and most highly regulated step in gene expression. Experimental techniques for monitoring transcription are, thus, important for studying gene expression and gene regulation as well as for translational research and drug development. Fluorescence methods are often superior to other techniques for real-time monitoring of biochemical processes. Green fluorescent proteins have long served as valuable tools for studying the process of translation. Here we present two methods that utilize fluorescent light-up RNA aptamers (FLAPs), the RNA mimics of green fluorescent proteins, to monitoring transcription and co-transcriptional RNA folding. FLAPs adopt defined three-dimensional folds that bind low molecular weight compounds called fluorogens with concomitant increase in fluorescence by many folds. FLAPs provide a strong fluorescence signal with low background that allows monitoring of transcription in real time in vitro and in vivo. However, it takes several seconds for RNA polymerase to synthesize FLAPs and the subsequent folding of the fluorogen-binding platform takes additional seconds or minutes. Here we show that Broccoli-FLAP is well suited for monitoring the rate of transcription initiation in a multi-round setup that mitigates the slow rate of the FLAP maturation. Furthermore, we demonstrate that a relatively slow and inefficient folding of iSpinach-FLAP can be taken advantage of for monitoring the action of RNA folding chaperones.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/genética , ARN , Pliegue del ARN
3.
Eur J Med Chem ; 237: 114342, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35439612

RESUMEN

Showdomycin produced by Streptomyces showdoensis ATCC 15227 is a C-nucleoside microbial natural product with antimicrobial and cytotoxic properties. The unique feature of showdomycin in comparison to other nucleosides is its maleimide base moiety, which has the distinct ability to alkylate nucleophilic thiol groups by a Michael addition reaction. In order to understand structure-activity relationships of showdomycin, we synthesized a series of derivatives with modifications in the maleimide ring at the site of alkylation to moderate its reactivity. The showdomycin congeners were designed to retain the planarity of the base ring system to allow Watson-Crick base pairing and preserve the nucleosidic character of the compounds. Consequently, we synthesized triphosphates of showdomycin derivatives and tested their activity against RNA polymerases. Bromo, methylthio, and ethylthio derivatives of showdomycin were incorporated into RNA by bacterial and mitochondrial RNA polymerases and somewhat less efficiently by the eukaryotic RNA polymerase II. Showdomycin derivatives acted as uridine mimics and delayed further extension of the RNA chain by multi-subunit, but not mitochondrial RNA polymerases. Bioactivity profiling indicated that the mechanism of action of ethylthioshowdomycin was altered, with approximately 4-fold reduction in both cytotoxicity against human embryonic kidney cells and antibacterial activity against Escherichia coli. In addition, the ethylthio derivative was not inactivated by medium components or influenced by addition of uridine in contrast to showdomycin. The results explain how both the maleimide ring and the nucleoside nature contribute to the bioactivity of showdomycin and demonstrates for the first time that the two activities can be separated.


Asunto(s)
Nucleósidos , Showdomicina , Antibacterianos/farmacología , Humanos , Maleimidas/farmacología , ARN , Showdomicina/farmacología , Relación Estructura-Actividad , Uridina
4.
J Mol Biol ; 434(2): 167383, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34863780

RESUMEN

The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the ß' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Microscopía por Crioelectrón/métodos , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Holoenzimas/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Iniciación de la Transcripción Genética , Transcripción Genética
5.
Nat Commun ; 12(1): 796, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542236

RESUMEN

RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxirribosa/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Simulación del Acoplamiento Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato , Thermus thermophilus/enzimología , Thermus thermophilus/genética
6.
Science ; 371(6524)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243850

RESUMEN

Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.


Asunto(s)
Adenosina Trifosfatasas/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Factor Rho/química , Elongación de la Transcripción Genética , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Complejos Multiproteicos/química , Factores de Elongación de Péptidos/química , Conformación Proteica , Transporte de Proteínas , Factores de Transcripción/química , Factores de Elongación Transcripcional/química , Dedos de Zinc
7.
Nat Commun ; 11(1): 6418, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339827

RESUMEN

Cellular RNA polymerases (RNAPs) can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP δ subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP-δ-HelD complexes. HelD has two long arms: a Gre cleavage factor-like coiled-coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the ß and ß' subunits apart and, aided by δ, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP-dependent manner. HelD abundance during slow growth and a dimeric (RNAP-δ-HelD)2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cues.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleósido-Trifosfatasa/metabolismo , Subunidades de Proteína/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/química , Modelos Moleculares , Nucleósido-Trifosfatasa/química , Multimerización de Proteína , Subunidades de Proteína/química
8.
Nucleic Acids Res ; 47(19): 10296-10312, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31495891

RESUMEN

Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN/química , Transcripción Genética/efectos de los fármacos , Uridina/análogos & derivados , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Oxígeno/química , Pseudomonas/química , ARN/genética , División del ARN/efectos de los fármacos , Streptomyces/química , Especificidad por Sustrato , Timidina/química , Timidina/genética , Transcripción Genética/genética , Factores de Elongación Transcripcional/genética , Uracilo/química , Uridina/síntesis química , Uridina/química , Uridina/farmacología
9.
Sci Rep ; 9(1): 8935, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222036

RESUMEN

Pseudouridimycin (PUM), a selective inhibitor of bacterial RNA polymerase has been previously detected in microbial-extracts of two strains of Streptomyces species (strain ID38640 and ID38673). Here, we isolated PUM and its deoxygenated analogue desoxy-pseudouridimycin (dPUM) from Streptomyces albus DSM 40763, previously reported to produce the metabolite strepturidin (STU). The isolated compounds were characterized by HRMS and spectroscopic techniques and they selectively inhibited transcription by bacterial RNA polymerase as previously reported for PUM. In contrast, STU could not be detected in the cultures of S. albus DSM 40763. As the reported characteristics reported for STU are almost identical with that of PUM, the existence of STU was questioned. We further sequenced the genome of S. albus DSM 40763 and identified a gene cluster that contains orthologs of all PUM biosynthesis enzymes but lacks the enzymes that would conceivably allow biosynthesis of STU as an additional product.


Asunto(s)
Antiinfecciosos/química , Nucleósidos/análogos & derivados , Nucleósidos/química , Streptomyces/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Genes Bacterianos , Familia de Multigenes , Nucleósidos/aislamiento & purificación , Nucleósidos/farmacología , Streptomyces/genética
10.
J Mol Biol ; 431(20): 3975-4006, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31153902

RESUMEN

Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , ARN/biosíntesis , Ribonucleótidos/metabolismo , Elongación de la Transcripción Genética , Unión Proteica
11.
Nucleic Acids Res ; 46(20): 10870-10887, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30256972

RESUMEN

All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.


Asunto(s)
Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Pliegue de Proteína , ARN/metabolismo , Elongación de la Transcripción Genética , Catálisis , Dominio Catalítico/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , ARN/química
12.
Proc Natl Acad Sci U S A ; 115(36): 8972-8977, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127008

RESUMEN

RNA polymerase I (Pol I) transcribes ribosomal DNA (rDNA) to produce the ribosomal RNA (rRNA) precursor, which accounts for up to 60% of the total transcriptional activity in growing cells. Pol I monitors rDNA integrity and influences cell survival, but little is known about how this enzyme processes UV-induced lesions. We report the electron cryomicroscopy structure of Pol I in an elongation complex containing a cyclobutane pyrimidine dimer (CPD) at a resolution of 3.6 Å. The structure shows that the lesion induces an early translocation intermediate exhibiting unique features. The bridge helix residue Arg1015 plays a major role in CPD-induced Pol I stalling, as confirmed by mutational analysis. These results, together with biochemical data presented here, reveal the molecular mechanism of Pol I stalling by CPD lesions, which is distinct from Pol II arrest by CPD lesions. Our findings open the avenue to unravel the molecular mechanisms underlying cell endurance to lesions on rDNA.


Asunto(s)
Daño del ADN , ADN de Hongos/química , ADN Ribosómico/química , ARN Polimerasa I/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Rayos Ultravioleta , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Microbiol ; 109(4): 445-457, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758107

RESUMEN

Universally conserved NusG/Spt5 factors reduce RNA polymerase pausing and arrest. In a widely accepted model, these proteins bridge the RNA polymerase clamp and lobe domains across the DNA channel, inhibiting the clamp opening to promote pause-free RNA synthesis. However, recent structures of paused transcription elongation complexes show that the clamp does not open and suggest alternative mechanisms of antipausing. Among these mechanisms, direct contacts of NusG/Spt5 proteins with the nontemplate DNA in the transcription bubble have been proposed to prevent unproductive DNA conformations and thus inhibit arrest. We used Escherichia coli RfaH, whose interactions with DNA are best characterized, to test this idea. We report that RfaH stabilizes the upstream edge of the transcription bubble, favoring forward translocation, and protects the upstream duplex DNA from exonuclease cleavage. Modeling suggests that RfaH loops the nontemplate DNA around its surface and restricts the upstream DNA duplex mobility. Strikingly, we show that RfaH-induced DNA protection and antipausing activity can be mimicked by shortening the nontemplate strand in elongation complexes assembled on synthetic scaffolds. We propose that remodeling of the nontemplate DNA controls recruitment of regulatory factors and R-loop formation during transcription elongation across all life.


Asunto(s)
ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factores de Elongación de Péptidos/metabolismo , ARN Bacteriano/biosíntesis , Transactivadores/metabolismo , Transcripción Genética/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Conformación de Ácido Nucleico , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Factores de Elongación Transcripcional/metabolismo
14.
Mol Cell ; 69(5): 723-725, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499129

RESUMEN

In this issue of Molecular Cell, Guo et al. (2018) and Kang et al. (2018) report structures of paused transcription complexes in which asynchronous translocation inhibits nucleotide addition, allowing for global rearrangements in RNA polymerase stabilized by RNA hairpin and NusA.


Asunto(s)
ARN Bacteriano , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Conformación de Ácido Nucleico , Factores de Elongación Transcripcional
15.
Proc Natl Acad Sci U S A ; 113(52): 14994-14999, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956639

RESUMEN

Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the ß' clamp domain plays the most prominent role. In this work, we investigate the role of the ß gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Conformación de Ácido Nucleico , Factor sigma/química , ADN Bacteriano/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Eliminación de Gen , Oligonucleótidos/genética , Factores de Elongación de Péptidos/química , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Thermus/química , Transcripción Genética
16.
Elife ; 52016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27697152

RESUMEN

Universally conserved factors from NusG family bind at the upstream fork junction of transcription elongation complexes and modulate RNA synthesis in response to translation, processing, and folding of the nascent RNA. Escherichia coli NusG enhances transcription elongation in vitro by a poorly understood mechanism. Here we report that E. coli NusG slows Gre factor-stimulated cleavage of the nascent RNA, but does not measurably change the rates of single nucleotide addition and translocation by a non-paused RNA polymerase. We demonstrate that NusG slows RNA cleavage by inhibiting backtracking. This activity is abolished by mismatches in the upstream DNA and is independent of the gate and rudder loops, but is partially dependent on the lid loop. Our comprehensive mapping of the upstream fork junction by base analogue fluorescence and nucleic acids crosslinking suggests that NusG inhibits backtracking by stabilizing the minimal transcription bubble.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
17.
ACS Synth Biol ; 5(9): 929-35, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27186988

RESUMEN

Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions, making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biosíntesis de Proteínas/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Factores de Elongación Transcripcional/genética , Regulación Bacteriana de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Regiones Promotoras Genéticas/genética
18.
Annu Rev Microbiol ; 69: 49-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26132790

RESUMEN

Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections.


Asunto(s)
Bacterias/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Elongación de la Transcripción Genética , Bacterias/enzimología , ADN/química , Reparación del ADN , Hibridación de Ácido Nucleico , Biosíntesis de Proteínas , ARN/química
19.
Methods Mol Biol ; 1276: 31-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665557

RESUMEN

Here we describe a direct fluorescence method that reports real-time occupancies of the pre- and post-translocated state of multisubunit RNA polymerase. In a stopped-flow setup, this method is capable of resolving a single base-pair translocation motion of RNA polymerase in real time. In a conventional spectrofluorometer, this method can be employed for studies of the time-averaged distribution of RNA polymerase on the DNA template. This method utilizes commercially available base analogue fluorophores integrated into template DNA strand in place of natural bases. We describe two template DNA strand designs where translocation of RNA polymerase from a pre-translocation to a post-translocation state results in disruption of stacking interactions of fluorophore with neighboring bases, with a concomitant large increase in fluorescence intensity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Escherichia coli/metabolismo , Biología Molecular/métodos , Transcripción Genética , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/química , Adenina/metabolismo , Escherichia coli/genética , Fluorescencia , Guanina/química , Guanina/metabolismo , Estructura Molecular , Oligonucleótidos/genética , Espectrometría de Fluorescencia/métodos , Xantopterina/análogos & derivados , Xantopterina/química , Xantopterina/metabolismo
20.
Nat Commun ; 5: 3408, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24598909

RESUMEN

Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (ß' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-ß subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the ß' F-loop and the ß fork loop. Collectively, our data are consistent with a model in which the ß subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the ß subunit.


Asunto(s)
Amidinas/metabolismo , Antiinfecciosos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Hidroxilaminas/metabolismo , Amidinas/química , Amidinas/farmacología , Sustitución de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Hidroxilaminas/química , Hidroxilaminas/farmacología , Cinética , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...