Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542318

RESUMEN

Previous studies examining the molecular and genetic basis of cognitive impairment, particularly in cohorts of long-living adults, have mainly focused on associations at the genome or transcriptome level. Dozens of significant dementia-associated genes have been identified, including APOE, APOC1, and TOMM40. However, most of these studies did not consider the intergenic interactions and functional gene modules involved in cognitive function, nor did they assess the metabolic changes in individual brain regions. By combining functional analysis with a transcriptome-wide association study, we aimed to address this gap and examine metabolic pathways in different areas of the brain of older adults. The findings from our previous genome-wide association study in 1155 older adults, 179 of whom had cognitive impairment, were used as input for the PrediXcan gene prediction algorithm. Based on the predicted changes in gene expression levels, we conducted a transcriptome-wide association study and functional analysis using the KEGG and HALLMARK databases. For a subsample of long-living adults, we used logistic regression to examine the associations between blood biochemical markers and cognitive impairment. The functional analysis revealed a significant association between cognitive impairment and the expression of NADH oxidoreductase in the cerebral cortex. Significant associations were also detected between cognitive impairment and signaling pathways involved in peroxisome function, apoptosis, and the degradation of lysine and glycan in other brain regions. Our approach combined the strengths of a transcriptome-wide association study with the advantages of functional analysis. It demonstrated that apoptosis and oxidative stress play important roles in cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Nonagenarios , Anciano de 80 o más Años , Humanos , Anciano , Estudio de Asociación del Genoma Completo , Disfunción Cognitiva/genética , Transcriptoma , Simulación por Computador
2.
Aging Dis ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38300644

RESUMEN

Aging is a natural process with varying effects. As we grow older, our bodies become more susceptible to aging-associated diseases. These diseases, individually or collectively, lead to the formation of distinct aging phenotypes. Identifying these aging phenotypes and understanding the complex interplay between coexistent diseases would facilitate more personalized patient management, a better prognosis, and a prolonged lifespan. Many studies distinguish between successful aging and frailty. However, this simple distinction fails to reflect the diversity of underlying causes. In this study, we sought to establish the underlying causes of frailty and determine the patterns in which these causes converge to form aging phenotypes. We conducted a comprehensive geriatric examination, cognitive assessment, and survival analysis of 2,688 long-living adults (median age = 92 years). The obtained data were clustered and used as input data for the Aging Phenotype Calculator, a multiclass classification model validated on an independent dataset of 96 older adults. The accuracy of the model was assessed using the receiver operating characteristic curve and the area under the curve. Additionally, we analyzed socioeconomic factors that could contribute to specific aging patterns. We identified five aging phenotypes: non-frailty, multimorbid frailty, metabolic frailty, cognitive frailty, and functional frailty. For each phenotype, we determined the underlying diseases and conditions and assessed the survival rate. Additionally, we provided management recommendations for each of the five phenotypes based on their distinct features and associated challenges. The identified aging phenotypes may facilitate better-informed decision-making. The Aging Phenotype Calculator (ROC AUC = 92%) may greatly assist geriatricians in patient management.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35805838

RESUMEN

Geriatric syndromes (GSs) and aging-associated diseases (AADs) are common side effects of aging. They are affecting the lives of millions of older adults and placing immense pressure on healthcare systems and economies worldwide. It is imperative to study the factors causing these conditions and develop a holistic framework for their management. The so-called long-lived individuals-people over the age of 90 who managed to retain much of their health and functionality-could be holding the key to understanding these factors and their health implications. We analyzed the health status and lifestyle of the long-lived individuals and identified risk factors for GSs. Family history greatly contributes to the health and prevention of cognitive decline in older adults. Lifestyle and certain socioeconomic factors such as education, the age of starting to work and retiring, job type and income level, physical activity, and hobby were also associated with certain GSs. Moreover, the levels of total protein, albumin, alpha-1 globulins, high-density lipoprotein, free triiodothyronine, and 25-hydroxyvitamin D were direct indicators of the current health status. The proposed mathematical model allows the prediction of successful aging based on family history, social and economic factors, and life-long physical activity (f1 score = 0.72, AUC = 0.68, precision = 0.83 and recall = 0.64).


Asunto(s)
Envejecimiento/fisiología , Evaluación Geriátrica , Promoción de la Salud/métodos , Longevidad , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Escolaridad , Ejercicio Físico , Estado de Salud , Salud Holística , Humanos , Renta , Actividades Recreativas , Estilo de Vida , Ocupaciones , Factores de Riesgo , Factores Socioeconómicos , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...