Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(9): 232, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37349471

RESUMEN

The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.


Asunto(s)
Ascomicetos , Musa , Enfermedades de las Plantas/microbiología , Pared Celular , Musa/microbiología , Proteínas Ligadas a GPI , Proteínas Fúngicas/genética
2.
Biology (Basel) ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290326

RESUMEN

A. marmorata is the raw material used for tepextate mescal production but is classified as an endangered species. In the present study, we obtain and multiply clonal lines of Agave marmorata Roezl by selecting seedlings derived from seeds. Ten seedlings from two lots of 400 germinated seeds were selected for axillary bud proliferation induced by BAP 5 mg/L in vitamin-free Murashige and Skoog's medium. Differences in shoot numbers, heights and senescent tissue formation were observed. Notably, the AM32 line formed 84 shoots and presented low senescent tissue after 60 d of culture. We also selected the AM31 and AM33 clonal lines. Four-month shoots were extracted with 80% methanol in water to determine the total content of saponins, flavonoids, and phenolic acids and compare the three clonal lines. Some bioactive molecules were identified using HPLC techniques and MALDI-TOF mass spectrometry none showed significant differences in content. Additionally, plants derived from the clonal lines were inoculated with four endophytic bacteria. Among these, Achromobacter xylosoxidans supported plant growth of AM32. A notable effect of plant death was observed after inoculation with Enterobacter cloacae, an endophyte of A. tequilana. Additionally, Pseudomonas aeruginosa, an endophyte from A. marmorata, reduced biomass. Our results demonstrate the incompatibility of A. marmorata to E. cloacae and specialization between the host plant and its endophytes. The compatibility of the plant-endophyte could be exploited to boost the establishment and stability of mutualisms to benefit plant development, stress tolerance and pathogen resistance. The differences in multiplication capacity, stable tissue formation, and endophyte biotization responses may indicate genetic variability. Clonal selection and micropropagation from seed-derived plants could contribute to conserving the endangered A. marmorata plant for reforestation in their natural habitats, thus, assuring mass propagation for sustainable industrial production of mescal, bioactive compounds, and prebiotics.

3.
Front Neurosci ; 16: 929590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117620

RESUMEN

Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 µM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.

4.
Microorganisms ; 9(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34576701

RESUMEN

Climatic factors and pathogenic fungi threaten global banana production. Moreover, bananas are being cultivated using excessive amendments of nitrogen and pesticides, which shift the microbial diversity in plants and soil. Advances in high-throughput sequencing (HTS) technologies and culture-dependent methods have provided valuable information about microbial diversity and functionality of plant-associated endophytic communities. Under stressful (biotic or abiotic) conditions, plants can recruit sets of microorganisms to alleviate specific potentially detrimental effects, a phenomenon known as "cry for help". This mechanism is likely initiated in banana plants infected by Fusarium wilt pathogen. Recently, reports demonstrated the synergistic and cumulative effects of synthetic microbial communities (SynComs) on naturally occurring plant microbiomes. Indeed, probiotic SynComs have been shown to increase plant resilience against biotic and abiotic stresses and promote growth. This review focuses on endophytic bacterial diversity and keystone taxa of banana plants. We also discuss the prospects of creating SynComs composed of endophytic bacteria that could enhance the production and sustainability of Cavendish bananas (Musa acuminata AAA), the fourth most important crop for maintaining global food security.

5.
Microorganisms ; 9(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34576782

RESUMEN

Since the early work of Justus von Liebig on nutrient absorption in plants in the 1800s [...].

6.
Front Microbiol ; 10: 804, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133991

RESUMEN

Banana (Musa spp.) is an important crop worldwide, but black Sigatoka disease caused by the fungus Pseudocercospora fijiensis threatens fruit production. In this work, we examined the potential of the endophytes of banana plants Enterobacter cloacae and Klebsiella pneumoniae, as antagonists of P. fijiensis and support plant growth in nutrient limited soils by N-transfer. The two bacterial isolates were identified by MALDI-TOF mass spectrometry and corroborated by 16S rRNA sequence analysis. Both bacteria were positive for beneficial traits such as N-fixation, indole acetic acid production, phosphate solubilization, negative for 1-aminocyclopropane 1-carboxylic acid deaminase and were antagonistic to P. fijiensis. To measure the effects on plant growth, the two plant bacteria and an E. coli strain (as non-endophyte), were inoculated weekly for 60 days as active cells (AC) and heat-killed cells (HKC) into plant microcosms without nutrients and compared to a water only treatment, and a mineral nutrients solution (MMN) treatment. Bacterial treatments increased growth parameters and prevented accelerated senescence, which was observed for water and mineral nutrients solution (MMN) treatments used as controls. Plants died after the first 20 days of being irrigated with water; irrigation with MMN enabled plants to develop some new leaves, but plants lost weight (-30%) during the same period. Plants treated with bacteria showed good growth, but E. cloacae AC treated plants had significantly greater biomass than the E. cloacae HKC. After 60 days, plants inoculated with E. cloacae AC showed intracellular bacteria within root cells, suggesting that a stable symbiosis was established. To evaluate the transference of organic N from bacteria into the plants, the 3 bacteria were grown with 15NH4Cl or Na15NO3 as the nitrogen source. The 15N transferred from bacteria to plant tissues was measured by pheophytin isotopomer abundance. The relative abundance of the isotopomers m/z 872.57, 873.57, 874.57, 875.57, 876.57 unequivocally demonstrated that plants acquired 15N atoms directly from bacterial cells, using them as a source of N, to support plant growth in restricted nutrient soils. E. cloacae might be a new alternative to promote growth and health of banana crops.

7.
J Membr Biol ; 252(2-3): 131-157, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31098678

RESUMEN

Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Dobles de Lípidos/química , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/química , Bacterias/química , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Membrana Celular/química , Membrana Celular/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Lipopéptidos/biosíntesis , Lipopéptidos/química , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Electricidad Estática , Relación Estructura-Actividad
8.
Biosens Bioelectron ; 99: 108-114, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28746900

RESUMEN

A dual-function platinum disc microelectrode sensor was used for in-situ monitoring of H2O2 produced in A. tequilana leaves after inoculation of their endophytic bacteria (Enterobacter cloacae). Voltammetric experiments were carried out from 0.0 to -1.0V, a potential range where H2O2 is electrochemically reduced. A needle was used to create a small cavity in the upper epidermis of A. tequilana leaves, where the fabricated electrochemical sensor was inserted by using a manual three-dimensional micropositioner. Control experiments were performed with untreated plants and the obtained electrochemical results clearly proved the formation of H2O2 in the leaves of plants 3h after the E. cloacae inoculation, according to a mechanism involving endogenous signaling pathways. In order to compare the sensitivity of the microelectrode sensor, the presence of H2O2 was detected in the root hairs by 3,3-diaminobenzidine (DAB) stain 72h after bacterial inoculation. In-situ pH measurements were also carried out with a gold disc microelectrode modified with a film of iridium oxide and lower pH values were found in A. tequilana leaves treated with bacteria, which may indicate the plant produces acidic substances by biosynthesis of secondary metabolites. This microsensor could be an advantageous tool for further studies on the understanding of the mechanism of H2O2 production during the plant-endophyte interaction.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Biosensibles , Peróxido de Hidrógeno/aislamiento & purificación , Agave/microbiología , Bacterias/química , Endófitos/química , Endófitos/metabolismo , Peróxido de Hidrógeno/química , Hojas de la Planta/microbiología , Raíces de Plantas/química , Raíces de Plantas/microbiología
9.
Braz. j. microbiol ; 45(4): 1333-1339, Oct.-Dec. 2014. graf, tab
Artículo en Inglés | LILACS | ID: lil-741284

RESUMEN

Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.


Asunto(s)
Agave/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Endófitos/clasificación , Endófitos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/microbiología , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Endófitos/aislamiento & purificación , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , /genética , Análisis de Secuencia de ADN
10.
Sci Rep ; 4: 6938, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25374146

RESUMEN

Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.


Asunto(s)
Agave/metabolismo , Bacillus/metabolismo , Endófitos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Agave/microbiología , Cloruro de Amonio/metabolismo , Carga Bacteriana , Clorofila/metabolismo , Clorofila A , Desoxirribonucleósidos/metabolismo , Viabilidad Microbiana , Fijación del Nitrógeno/fisiología , Isótopos de Nitrógeno/metabolismo , Oxidación-Reducción , Feofitinas/metabolismo , Raíces de Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Simbiosis , Triptófano/metabolismo
11.
Braz J Microbiol ; 45(1): 359-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24948956

RESUMEN

The chemical management of the black leaf streak disease in banana caused by Mycosphaerella fijiensis (Morelet) requires numerous applications of fungicides per year. However this has led to fungicide resistance in the field. The present study evaluated the activities of six fungicides against the mycelial growth by determination of EC50 values of strains collected from fields with different fungicide management programs: Rustic management (RM) without applications and Intensive management (IM) more than 25 fungicide application/year. Results showed a decreased sensitivity to all fungicides in isolates collected from IM. Means of EC50 values in mg L(-1) for RM and IM were: 13.25 ± 18.24 and 51.58 ± 46.14 for azoxystrobin, 81.40 ± 56.50 and 1.8575 ± 2.11 for carbendazim, 1.225 ± 0.945 and 10.01 ± 8.55 for propiconazole, 220 ± 67.66 vs. 368 ± 62.76 for vinclozolin, 9.862 ± 3.24 and 54.5 ± 21.08 for fludioxonil, 49.2125 ± 34.11 and 112.25 ± 51.20 for mancozeb. A molecular analysis for ß-tubulin revealed a mutation at codon 198 in these strains having an EC50 greater than 10 mg L(-1) for carbendazim. Our data indicate a consistency between fungicide resistance and intensive chemical management in banana fields, however indicative values for resistance were also found in strains collected from rustic fields, suggesting that proximity among fields may be causing a fungus interchange, where rustic fields are breeding grounds for development of resistant strains. Urgent actions are required in order to avoid fungicide resistance in Mexican populations of M. fijiensis due to fungicide management practices.


Asunto(s)
Ascomicetos/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Musa/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Utilización de Medicamentos , México , Mutación Missense , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/terapia , Tubulina (Proteína)/genética
12.
PLoS One ; 9(3): e91616, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24646830

RESUMEN

In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.


Asunto(s)
Melaninas/metabolismo , Musa/microbiología , Micelio/patogenicidad , Naftoles/metabolismo , Hojas de la Planta/microbiología , Saccharomycetales/patogenicidad , Oxígeno Singlete/metabolismo , Factores de Virulencia/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Musa/efectos de la radiación , Micelio/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de la radiación , Saccharomycetales/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
13.
Braz J Microbiol ; 45(4): 1333-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25763038

RESUMEN

Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.


Asunto(s)
Agave/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Endófitos/clasificación , Endófitos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/microbiología , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Endófitos/aislamiento & purificación , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Braz. j. microbiol ; 45(1): 359-364, 2014. ilus
Artículo en Inglés | LILACS | ID: lil-709492

RESUMEN

The chemical management of the black leaf streak disease in banana caused by Mycosphaerella fijiensis (Morelet) requires numerous applications of fungicides per year. However this has led to fungicide resistance in the field. The present study evaluated the activities of six fungicides against the mycelial growth by determination of EC50 values of strains collected from fields with different fungicide management programs: Rustic management (RM) without applications and Intensive management (IM) more than 25 fungicide application/year. Results showed a decreased sensitivity to all fungicides in isolates collected from IM. Means of EC50 values in mg L-1 for RM and IM were: 13.25 ± 18.24 and 51.58 ± 46.14 for azoxystrobin, 81.40 ± 56.50 and 1.8575 ± 2.11 for carbendazim, 1.225 ± 0.945 and 10.01 ± 8.55 for propiconazole, 220 ± 67.66 vs. 368 ± 62.76 for vinclozolin, 9.862 ± 3.24 and 54.5 ± 21.08 for fludioxonil, 49.2125 ± 34.11 and 112.25 ± 51.20 for mancozeb. A molecular analysis for β-tubulin revealed a mutation at codon 198 in these strains having an EC50 greater than 10 mg L-1 for carbendazim. Our data indicate a consistency between fungicide resistance and intensive chemical management in banana fields, however indicative values for resistance were also found in strains collected from rustic fields, suggesting that proximity among fields may be causing a fungus interchange, where rustic fields are breeding grounds for development of resistant strains. Urgent actions are required in order to avoid fungicide resistance in Mexican populations of M. fijiensis due to fungicide management practices.


Asunto(s)
Ascomicetos/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Musa/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Utilización de Medicamentos , México , Mutación Missense , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/terapia , Tubulina (Proteína)/genética
15.
Braz. j. microbiol ; 42(1): 30-40, Jan.-Mar. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-571371

RESUMEN

The chemical changes in barley-straw (BS), wheat-straw (WS) and vineyard-pruning (VP) substrates were determined during colonization of Lentinula edodes mycelia (during primordium development) in solid state fermentation. Primordia appeared 39-50 days after inoculation. VP appeared to promote early sporophore initiation. The concentration of hemicellulose in BS and VP decreased gradually from 25.5 percent to 15.6 percent and from 15.8 percent to 12.3 percent, respectively. However in WS, hemicellulose decreased from 27.2 percent to 9.5 percent. Lignin broke down continuously in BS and WS, with 31.8 percent and 34.4 percent degradation, respectively; higher than that of cellulose. During the pinning stage, the C:N ratio decreased in VP and BS, but not in WS. On all substrates the phenols decreased notably throughout the first week of mycelial growth. The time elapsed (days) to pinning was positively correlated with cellulose content (r=0.89), total sugar (r=0.85) and inversely correlated to lignin (r=-1.00) and phenol content (r=-0.55).


Asunto(s)
Celulosa/análisis , Hongos Shiitake/crecimiento & desarrollo , Microbiología Ambiental , Fermentación , Micelio/crecimiento & desarrollo , Fijación del Nitrógeno , Plantas , Residuos , Métodos , Sustratos para Tratamiento Biológico , Métodos
16.
Braz J Microbiol ; 42(1): 30-40, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24031601

RESUMEN

The chemical changes in barley-straw (BS), wheat-straw (WS) and vineyard-pruning (VP) substrates were determined during colonization of Lentinula edodes mycelia (during primordium development) in solid state fermentation. Primordia appeared 39-50 days after inoculation. VP appeared to promote early sporophore initiation. The concentration of hemicellulose in BS and VP decreased gradually from 25.5% to 15.6% and from 15.8% to 12.3%, respectively. However in WS, hemicellulose decreased from 27.2% to 9.5%. Lignin broke down continuously in BS and WS, with 31.8% and 34.4% degradation, respectively; higher than that of cellulose. During the pinning stage, the C:N ratio decreased in VP and BS, but not in WS. On all substrates the phenols decreased notably throughout the first week of mycelial growth. The time elapsed (days) to pinning was positively correlated with cellulose content (r=0.89), total sugar (r=0.85) and inversely correlated to lignin (r=-1.00) and phenol content (r=-0.55).

17.
Can J Microbiol ; 55(7): 887-94, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19767862

RESUMEN

Mycosphaerella fijiensis causes black leaf streak disease in banana and plantain. This fungus is usually attacked by reactive oxygen species secreted by the plant or during exposure to fungicide, however, little is known about the antioxidant response of the fungus. In this study, mycelia were observed to totally decompose 30 mmol/L of hydrogen peroxide (H2O2) within 120 min, liberating oxygen bubbles, and also to survive in concentrations as high as 100 mmol/L H2O2. The oxidative stress responses to H2O2, paraquat, and hydroquinone were characterized in terms of the activities of catalase and superoxide dismutase (SOD). Two active catalase bands were seen in native PAGE induced by H2O2. Band I had monofunctional activity and band II had bifunctional catalase-peroxidase activity. Two isozymes of SOD, distinguishable by their cyanide sensitivity, were found; CuZnSOD was the main one. The combination of H2O2 and 3-aminotriazole reduced the accumulation of biomass up to 40% compared with exposure to H2O2 alone, suggesting that catalase is important for the rapid decomposition of H2O2 and has a direct bearing on cell viability. The results also suggest that the superoxide anion formed through the redox of paraquat and hydroquinone has a greater effect than H2O2 on the cellular viability of M. fijiensis.


Asunto(s)
Ascomicetos/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Musa/microbiología , Estrés Oxidativo , Paraquat/farmacología , Enfermedades de las Plantas/microbiología , Ascomicetos/enzimología , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
18.
Can J Microbiol ; 53(10): 1150-7, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18026207

RESUMEN

Lentinula edodes is considered an alternative recycling agent for agricultural wastes, and there have been several studies to understand the relationship between its growth and ligninolytic activity. We tested the effect of wood from viticulture pruning, extracted with solvents of differing polarity, on the biomass production and activity pattern of ligninolytic enzymes. The analysis was done by measuring the mycelial dry mass and enzyme activity of liquid growth medium during the culture of L. edodes, adding either single extracts or a combination of extracts. Polar extracts enhanced mycelial production, and the activity patterns of lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, and laccase were comparable to their activities predicted by ligninolysis models proposed for other fungi. We conclude that the polar extracts could be useful for enhancing fungal biomass production and for modifying lignin degradation because the regulation of ligninolytic enzyme activity is differentially influenced by the polarity of the extract.


Asunto(s)
Agricultura/métodos , Regulación Enzimológica de la Expresión Génica , Lignina/metabolismo , Extractos Vegetales/farmacología , Hongos Shiitake/enzimología , Vitis/química , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Lacasa/metabolismo , Micelio/efectos de los fármacos , Micelio/enzimología , Micelio/crecimiento & desarrollo , Peroxidasas/metabolismo , Hongos Shiitake/efectos de los fármacos , Hongos Shiitake/crecimiento & desarrollo
19.
Appl Microbiol Biotechnol ; 71(4): 432-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16331453

RESUMEN

The production of four strains of edible mushroom Lentinula edodes was evaluated through solid-state fermentation (SSF) of vineyard pruning (VP), barley straw (BS), and wheat straw (WS). Biological efficiency, proximal composition, and energy value of the fruiting bodies, as well as substrate chemical changes after harvest, were determined. The shortest primordium formation time (28 days), highest biological efficiency (93.25%), highest yield (37.46%), and shortest production cycle (6 days) were observed in VP. The fruiting bodies obtained from VP had high energy value (379.09 to 392.95 kcal) and contents of protein (12.37 to 17.19%), but low contents of fat (1.82 to 2.15%). After SSF, phenol concentration decreased on VP (1.2 mmol/L) and BS (0.31 mmol/L), but on WS remained practically the same. Hemicellulose decreased in all substrates; cellulose increased on WS and decreased in the rest of the treatments. Lignin decreased on WS and BS, but its concentration increased on VP. The variability observed in the degradation capacity of lignocellulosic components was influenced by the substrate's nature, environmental factors, and genetic factors among strains. VP has great potential for shiitake production due to its low cost, short production cycles, and high biological efficiency.


Asunto(s)
Celulosa/metabolismo , Lignina/metabolismo , Hongos Shiitake/metabolismo , Agricultura , Fermentación , Eliminación de Residuos/métodos , Hongos Shiitake/química , Hongos Shiitake/crecimiento & desarrollo
20.
J Agric Food Chem ; 50(9): 2537-42, 2002 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-11958618

RESUMEN

The bioconversion of vineyard pruning and grape pomace by Pleurotus spp. using a solid state fermentation (SSF) was evaluated. Fruiting body production and chemical changes in the substrates after harvesting were measured. Biological efficiency and bioconversion ranged from 37.2 to 78.7% and from 16.7 to 38.8%, respectively. The best substrates for mycelial growth and mushroom yield were the mixtures with higher vineyard pruning content. Inclusion of pruning content had higher phenolic components and total sugars, better C/N ratio, and lower crude fat and total nitrogen than pomace. On the contrary, mycelium grew more slowly and scarcely in all treatments with 100% grape pomace. Moisture, protein, fat, and lignin contents were generally higher in mixtures with higher pomace proportion, whereas neutral detergent fiber, hemicellulose, and cellulose contents were higher with pruning content. Pleurotus strains may act depending on the availability of fiber fractions of substrate, and dynamic changes in digestion might occur as these fractions change during fungal growth. The recycling of viticulture residues through SSF by Pleurotus has great potential to produce human food and yields an available high-fiber feed for limited use in ruminants.


Asunto(s)
Alimentación Animal , Alimentos , Pleurotus/metabolismo , Animales , Biodegradación Ambiental , Fibras de la Dieta , Fermentación , Humanos , Pleurotus/crecimiento & desarrollo , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...