Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37626600

RESUMEN

There is increasing evidence of cardiac involvement in COVID-19 cases, with a broad range of clinical manifestations spanning from acute life-threatening conditions such as ventricular dysrhythmias, myocarditis, acute myocardial ischemia and pulmonary thromboembolism to long-term cardiovascular sequelae. In particular, acute myocarditis represents an uncommon but frightening complication of SARS-CoV-2 infection. Even if many reports of SARS CoV-2 myocarditis are present in the literature, the majority of them lacks histological confirmation of cardiac injury. Here, we report a case of a young lady, who died suddenly a few days after testing positive for SARS-CoV-2, whose microscopic and genetics features suggested a direct cardiac involvement compatible with fulminant myocarditis.

3.
Cardiovasc Res ; 119(7): 1583-1595, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635236

RESUMEN

AIMS: The ageing heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischaemia, atherosclerosis, and diabetes models. Here, we asked whether the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous ageing. METHODS AND RESULTS: Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS: We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's ageing. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.


Asunto(s)
Cardiomiopatías , Longevidad , Animales , Ratones , Envejecimiento/genética , Cardiomiopatías/genética , Cardiomiopatías/patología , Fenómenos Fisiológicos Cardiovasculares , Genotipo , Longevidad/genética , Pericitos/patología
4.
Cardiovasc Res ; 118(17): 3374-3385, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35709329

RESUMEN

AIMS: Methylation of non-histone proteins is emerging as a central regulatory mechanism in health and disease. The methyltransferase SETD7 has shown to methylate and alter the function of a variety of proteins in vitro; however, its function in the heart is poorly understood. The present study investigates the role of SETD7 in myocardial ischaemic injury. METHODS AND RESULTS: Experiments were performed in neonatal rat ventricular myocytes (NRVMs), SETD7 knockout mice (SETD7-/-) undergoing myocardial ischaemia/reperfusion (I/R) injury, left ventricular (LV) myocardial samples from patients with ischaemic cardiomyopathy (ICM), and peripheral blood mononuclear cells (PBMCs) from patients with ST-elevation MI (STEMI). We show that SETD7 is activated upon energy deprivation in cultured NRVMs and methylates the Hippo pathway effector YAP, leading to its cytosolic retention and impaired transcription of antioxidant genes manganese superoxide dismutase (MnSOD) and catalase (CAT). Such impairment of antioxidant defence was associated with mitochondrial reactive oxygen species (mtROS), organelle swelling, and apoptosis. Selective pharmacological inhibition of SETD7 by (R)-PFI-2 restored YAP nuclear localization, thus preventing mtROS, mitochondrial damage, and apoptosis in NRVMs. In mice, genetic deletion of SETD7 attenuated myocardial I/R injury, mtROS, and LV dysfunction by restoring YAP-dependent transcription of MnSOD and CAT. Moreover, in cardiomyocytes isolated from I/R mice and ICM patients, (R)-PFI-2 prevented mtROS accumulation, while improving Ca2+-activated tension. Finally, SETD7 was up-regulated in PBMCs from STEMI patients and negatively correlated with MnSOD and CAT. CONCLUSION: We show a methylation-dependent checkpoint regulating oxidative stress during myocardial ischaemia. SETD7 inhibition may represent a valid therapeutic strategy in this setting.


Asunto(s)
Antioxidantes , N-Metiltransferasa de Histona-Lisina , Infarto del Miocardio con Elevación del ST , Animales , Ratones , Ratas , Apoptosis , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucocitos Mononucleares/metabolismo , Metilación , Miocitos Cardíacos/metabolismo , Infarto del Miocardio con Elevación del ST/metabolismo , Ratones Noqueados , Humanos
5.
Clin Sci (Lond) ; 135(24): 2667-2689, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34807265

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a broad range of clinical responses including prominent microvascular damage. The capacity of SARS-CoV-2 to infect vascular cells is still debated. Additionally, the SARS-CoV-2 Spike (S) protein may act as a ligand to induce non-infective cellular stress. We tested this hypothesis in pericytes (PCs), which are reportedly reduced in the heart of patients with severe coronavirus disease-2019 (COVID-19). Here we newly show that the in vitro exposure of primary human cardiac PCs to the SARS-CoV-2 wildtype strain or the α and δ variants caused rare infection events. Exposure to the recombinant S protein alone elicited signalling and functional alterations, including: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors causing EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation, and rescued PC function in the presence of the S protein. Immunoreactive S protein was detected in the peripheral blood of infected patients. In conclusion, our findings suggest that the S protein may prompt PC dysfunction, potentially contributing to microvascular injury. This mechanism may have clinical and therapeutic implications.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Basigina/metabolismo , Miocardio/enzimología , Pericitos/enzimología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , Células CACO-2 , Muerte Celular , Niño , Preescolar , Citocinas/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Miocardio/citología , Pericitos/virología , Cultivo Primario de Células , Adulto Joven
6.
ESC Heart Fail ; 8(6): 4465-4483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34609075

RESUMEN

Acute heart failure (AHF) affects millions of people worldwide, and it is a potentially life-threatening condition for which the cardiologist is more often brought into play. It is crucial to rapidly identify, among patients presenting with dyspnoea, those with AHF and to accurately stratify their risk, in order to define the appropriate setting of care, especially nowadays due to the coronavirus disease 2019 (COVID-19) outbreak. Furthermore, with physical examination being limited by personal protective equipment, the use of new alternative diagnostic and prognostic tools could be of extreme importance. In this regard, usage of biomarkers, especially when combined (a multimarker approach) is beneficial for establishment of an accurate diagnosis, risk stratification and post-discharge monitoring. This review highlights the use of both traditional biomarkers such as natriuretic peptides (NP) and troponin, and emerging biomarkers such as soluble suppression of tumourigenicity (sST2) and galectin-3 (Gal-3), from patients' emergency admission to discharge and follow-up, to improve risk stratification and outcomes in terms of mortality and rehospitalization.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Enfermedad Aguda , Cuidados Posteriores , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Humanos , Alta del Paciente , SARS-CoV-2
7.
Antioxid Redox Signal ; 34(15): 1151-1164, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33226850

RESUMEN

Aims: To ascertain if human pericytes produce SPARC (acronym for Secreted Protein Acidic and Cysteine Rich), a matricellular protein implicated in the regulation of cell proliferation, migration, and cell-matrix interactions; clarify if SPARC expression in cardiac pericytes is modulated by hypoxia; and determine the functional consequences of SPARC silencing. Results: Starting from the recognition that the conditioned media (CM) of human pericytes promote proliferation and migration of cardiac stromal cells, we screened candidate mediators by mass-spectrometry analysis. Of the 14 high-confidence proteins (<1% FDR) identified in the bioactive fractions of the pericyte CM, SPARC emerged as the top-scored matricellular protein. SPARC expression was validated using ELISA and found to be upregulated by hypoxia/starvation in pericytes that express platelet-derived growth factor receptor α (PDGFRα). This subfraction is acknowledged to play a key role in extracellular matrix remodeling. Studies in patients with acute myocardial infarction showed that peripheral blood SPARC correlates with the levels of creatine kinase Mb, a marker of cardiac damage. Immunohistochemistry analyses of infarcted hearts revealed that SPARC is expressed in vascular and interstitial cells. Silencing of SPARC reduced the pericyte ability to secrete collagen1a1, without inhibiting the effects of CM on cardiac and endothelial cells. These data indicate that SPARC is enriched in the bioactive fraction of the pericyte CM, is induced by hypoxia and ischemia, and is essential for pericyte ability to produce collagen. Innovation: This study newly indicates that pericytes are a source of the matricellular protein SPARC. Conclusion: Modulation of SPARC production by pericytes may have potential implications for postinfarct healing.


Asunto(s)
Cadena alfa 1 del Colágeno Tipo I/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Osteonectina/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Hipoxia de la Célula/genética , Movimiento Celular/genética , Proliferación Celular/genética , Forma MB de la Creatina-Quinasa/genética , Células Endoteliales/metabolismo , Matriz Extracelular/genética , Regulación de la Expresión Génica/genética , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/patología , Pericitos/metabolismo , Secretoma/metabolismo
8.
Eur J Heart Fail ; 22(9): 1568-1581, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32384208

RESUMEN

AIMS: Homozygosity for a four-missense single-nucleotide polymorphism haplotype of the human BPIFB4 gene is enriched in long-living individuals. Delivery of this longevity-associated variant (LAV) improved revascularisation and reduced endothelial dysfunction and atherosclerosis in mice through a mechanism involving the stromal cell-derived factor-1 (SDF-1). Here, we investigated if delivery of the LAV-BPIFB4 gene may attenuate the progression of diabetic cardiomyopathy. METHODS AND RESULTS: Compared with age-matched lean controls, diabetic db/db mice showed altered echocardiographic indices of diastolic and systolic function and histological evidence of microvascular rarefaction, lipid accumulation, and fibrosis in the myocardium. All these alterations, as well as endothelial dysfunction, were prevented by systemic LAV-BPIFB4 gene therapy using an adeno-associated viral vector serotype 9 (AAV9). In contrast, AAV9 wild-type-BPIFB4 exerted no benefit. Interestingly, LAV-BPIFB4-treated mice showed increased SDF-1 levels in peripheral blood and myocardium and up-regulation of the cardiac myosin heavy chain isoform alpha, a contractile protein that was reduced in diabetic hearts. SDF-1 up-regulation was instrumental to LAV-BPIFB4-induced benefit as both haemodynamic and structural improvements were inhibited by an orally active antagonist of the SDF-1 CXCR4 receptor. CONCLUSIONS: In mice with type-2 diabetes, LAV-BPIFB4 gene therapy promotes an advantageous remodelling of the heart, allowing it to better withstand diabetes-induced stress. These results support the viability of transferring healthy characteristics of longevity to attenuate diabetic cardiac disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Animales , Diabetes Mellitus Tipo 2/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Péptidos y Proteínas de Señalización Intercelular , Longevidad , Ratones , Ratones Obesos , Miocardio , Obesidad , Fosfoproteínas , Receptores CXCR4 , Transducción de Señal
9.
Arterioscler Thromb Vasc Biol ; 39(6): 1113-1124, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31018661

RESUMEN

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Pericitos/metabolismo , Vena Safena/metabolismo , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miembro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/cirugía , Masculino , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Desnudos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/trasplante , Fosforilación , Receptores CXCR/genética , Receptores CXCR/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo
10.
Oxid Med Cell Longev ; 2019: 5813147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881594

RESUMEN

Aging is by far the dominant risk factor for the development of cardiovascular diseases, whose prevalence dramatically increases with increasing age reaching epidemic proportions. In the elderly, pathologic cellular and molecular changes in cardiac tissue homeostasis and response to injury result in progressive deteriorations in the structure and function of the heart. Although the phenotypes of cardiac aging have been the subject of intense study, the recent discovery that cardiac homeostasis during mammalian lifespan is maintained and regulated by regenerative events associated with endogenous cardiac stem cell (CSC) activation has produced a crucial reconsideration of the biology of the adult and aged mammalian myocardium. The classical notion of the adult heart as a static organ, in terms of cell turnover and renewal, has now been replaced by a dynamic model in which cardiac cells continuously die and are then replaced by CSC progeny differentiation. However, CSCs are not immortal. They undergo cellular senescence characterized by increased ROS production and oxidative stress and loss of telomere/telomerase integrity in response to a variety of physiological and pathological demands with aging. Nevertheless, the old myocardium preserves an endogenous functionally competent CSC cohort which appears to be resistant to the senescent phenotype occurring with aging. The latter envisions the phenomenon of CSC ageing as a result of a stochastic and therefore reversible cell autonomous process. However, CSC aging could be a programmed cell cycle-dependent process, which affects all or most of the endogenous CSC population. The latter would infer that the loss of CSC regenerative capacity with aging is an inevitable phenomenon that cannot be rescued by stimulating their growth, which would only speed their progressive exhaustion. The resolution of these two biological views will be crucial to design and develop effective CSC-based interventions to counteract cardiac aging not only improving health span of the elderly but also extending lifespan by delaying cardiovascular disease-related deaths.


Asunto(s)
Senescencia Celular/genética , Células Madre Multipotentes/metabolismo , Miocitos Cardíacos/metabolismo , Adulto , Humanos
12.
Lab Invest ; 96(9): 959-971, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27348627

RESUMEN

Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The aryl hydrocarbon receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: (i) examined the cytokine expression profile; (ii) counted AhR-expressing MCs; (iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; (iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); (v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and (vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors released by MCs on AhR activation. These results suggest a new mechanistic role of MCs in the pathogenesis of endometriosis.


Asunto(s)
Citocinas/metabolismo , Endometriosis/metabolismo , Mastocitos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Quinurenina/metabolismo , Ligandos , Microscopía Fluorescente , Persona de Mediana Edad , Técnicas de Cultivo de Tejidos
13.
Mol Ther ; 23(12): 1854-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26354341

RESUMEN

Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Células Madre Hematopoyéticas/citología , Infarto del Miocardio/genética , Miocardio/patología , Factor de Crecimiento Nervioso/metabolismo , Adenoviridae/genética , Animales , Trasplante de Médula Ósea , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Factor de Crecimiento Nervioso/genética , Osteoclastos/citología
14.
Circ Res ; 116(10): e81-94, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25801898

RESUMEN

RATIONALE: Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE: Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS: SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS: Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.


Asunto(s)
Infarto del Miocardio/cirugía , Miocardio/patología , Miocitos Cardíacos/trasplante , Neovascularización Fisiológica , Pericitos/trasplante , Regeneración , Trasplante de Células Madre , Proteínas Angiogénicas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Fibrosis , Hemodinámica , Humanos , Ratones SCID , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Comunicación Paracrina , Pericitos/metabolismo , Fenotipo , Recuperación de la Función , Vena Safena/citología , Factores de Tiempo , Remodelación Ventricular
15.
Stem Cell Res Ther ; 6: 2, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559708

RESUMEN

INTRODUCTION: Autologous fat grafting is commonly used to correct soft-tissue contour deformities. However, results are impaired by a variable and unpredictable resorption rate. Autologous adipose-derived stromal cells in combination with lipoinjection (cell-assisted lipotransfer) seem to favor a long-term persistence of fat grafts, thus fostering the development of devices to be used in the operating room at the point of care, to isolate the stromal vascular fraction (SVF) and produce SVF-enhanced fat grafts with safe and standardized protocols. Focusing on patients undergoing breast reconstruction by lipostructure, we analyzed a standard technique, a modification of the Coleman's procedure, and three different commercially available devices (Lipokit, Cytori, Fastem), in terms of 1) ability to enrich fat grafts in stem cells and 2) clinical outcome at 6 and 12 months. METHODS: To evaluate the ability to enrich stem cells, we compared, for each patient (n=20), the standard lipoaspirate with the respective stem cell-enriched one, analyzing yield, immunophenotype and colony-forming capacity of the SVF cells as well as immunophenotype, clonogenicity and multipotency of the obtained adipose stem cells (ASCs). Regarding the clinical outcome, we compared, by ultrasonography imaging, changes at 6 and 12 months in the subcutaneous thickness of patients treated with stem-cell enriched (n=14) and standard lipoaspirates (n=16). RESULTS: Both methods relying on the enzymatic isolation of primitive cells led to significant increase in the frequency, in the fat grafts, of SVF cells as well as of clonogenic and multipotent ASCs, while the enrichment was less prominent for the device based on the mechanical isolation of the SVF. From a clinical point of view, patients treated with SVF-enhanced fat grafts demonstrated, at six months, a significant superior gain of thickness of both the central and superior-medial quadrants with respect to patients treated with standard lipotransfer. In the median-median quadrant the effect was still persistent at 12 months, confirming an advantage of lipotransfer technique in enriching improving long-term fat grafts. CONCLUSIONS: This comparative study, based on reproducible biological and clinical parameters and endpoints, showed an advantage of lipotransfer technique in enriching fat grafts in stem cells and in favoring, clinically, long-term fat grafts.


Asunto(s)
Tejido Adiposo/citología , Células Madre/metabolismo , Adulto , Anciano , Antígenos de Superficie/metabolismo , Mama/cirugía , Diferenciación Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Lipectomía , Mastectomía , Persona de Mediana Edad , Células Madre/citología , Ultrasonografía Mamaria , Adulto Joven
16.
Stem Cells ; 32(11): 2998-3011, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25069783

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are the precursors of various cell types that compose both normal and cancer tissue microenvironments. In order to support the widely diversified parenchymal cells and tissue organization, MSCs are characterized by a large degree of heterogeneity, although available analyses of molecular and transcriptional data do not provide clear evidence. We have isolated MSCs from high-grade serous ovarian cancers (HG-SOCs) and various normal tissues (N-MSCs), demonstrated their normal genotype and analyzed their transcriptional activity with respect to the large comprehensive FANTOM5 sample dataset. Our integrative analysis conducted against the extensive panel of primary cells and tissues of the FANTOM5 project allowed us to mark the HG-SOC-MSCs CAGE-seq transcriptional heterogeneity and to identify a cell-type-specific transcriptional activity showing a significant relationship with primary mesothelial cells. Our analysis shows that MSCs isolated from different tissues are highly heterogeneous. The mesothelial-related gene signature identified in this study supports the hypothesis that HG-SOC-MSCs are bona fide representatives of the ovarian district. This finding indicates that HG-SOC-MSCs could actually derive from the coelomic mesothelium, suggesting that they might be linked to the epithelial tumor through common embryological precursors.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/citología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Mesoteliales/metabolismo , Neoplasias Ováricas/patología , Microambiente Tumoral/fisiología , Carcinoma Epitelial de Ovario , Femenino , Humanos , Clasificación del Tumor/métodos , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Mesoteliales/patología , Neoplasias Ováricas/metabolismo
17.
Cardiovasc Res ; 97(1): 55-65, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22997160

RESUMEN

AIMS: Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. METHODS AND RESULTS: Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. CONCLUSION: We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Células Madre/efectos de los fármacos , Tiamina/análogos & derivados , Animales , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Endoglina , Citometría de Flujo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Superóxidos/metabolismo , Tiamina/farmacología , Transfección , Transcetolasa/metabolismo
18.
Circulation ; 125(14): 1774-86, S1-19, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22392530

RESUMEN

BACKGROUND: Pain triggers a homeostatic alarm reaction to injury. It remains unknown, however, whether nociceptive signaling activated by ischemia is relevant for progenitor cells (PC) release from bone marrow. To this end, we investigated the role of the neuropeptide substance P (SP) and cognate neurokinin 1 (NK1) nociceptor in PC activation and angiogenesis during ischemia in mice and in human subjects. METHODS AND RESULTS: The mouse bone marrow contains sensory fibers and PC that express SP. Moreover, SP-induced migration provides enrichment for PC that express NK1 and promote reparative angiogenesis after transplantation in a mouse model of limb ischemia. Acute myocardial infarction and limb ischemia increase SP levels in peripheral blood, decrease SP levels in bone marrow, and stimulate the mobilization of NK1-expressing PC, with these effects being abrogated by systemic administration of the opioid receptor agonist morphine. Moreover, bone marrow reconstitution with NK1-knockout cells results in depressed PC mobilization, delayed blood flow recovery, and reduced neovascularization after ischemia. We next asked whether SP is instrumental to PC mobilization and homing in patients with ischemia. Human PC express NK1, and SP-induced migration provides enrichment for proangiogenic PC. Patients with acute myocardial infarction show high circulating levels of SP and NK1-positive cells that coexpress PC antigens, such as CD34, KDR, and CXCR4. Moreover, NK1-expressing PC are abundant in infarcted hearts but not in hearts that developed an infarct after transplantation. CONCLUSIONS: Our data highlight the role of SP in reparative neovascularization. Nociceptive signaling may represent a novel target of regenerative medicine.


Asunto(s)
Isquemia/fisiopatología , Neovascularización Fisiológica , Nocicepción/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Sustancia P/fisiología , Animales , Movilización de Célula Madre Hematopoyética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Péptido Relacionado con el Gen de Calcitonina/fisiología , Receptores de Neuroquinina-1/fisiología
19.
Am J Pathol ; 179(1): 349-66, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21703415

RESUMEN

Currently, it is unknown whether defects in stem cell growth and differentiation contribute to myocardial aging and chronic heart failure (CHF), and whether a compartment of functional human cardiac stem cells (hCSCs) persists in the decompensated heart. To determine whether aging and CHF are critical determinants of the loss in growth reserve of the heart, the properties of hCSCs were evaluated in 18 control and 23 explanted hearts. Age and CHF showed a progressive decrease in functionally competent hCSCs. Chronological age was a major predictor of five biomarkers of hCSC senescence: telomeric shortening, attenuated telomerase activity, telomere dysfunction-induced foci, and p21(Cip1) and p16(INK4a) expression. CHF had similar consequences for hCSCs, suggesting that defects in the balance between cardiomyocyte mass and the pool of nonsenescent hCSCs may condition the evolution of the decompensated myopathy. A correlation was found previously between telomere length in circulating bone marrow cells and cardiovascular diseases, but that analysis was restricted to average telomere length in a cell population, neglecting the fact that telomere attrition does not occur uniformly in all cells. The present study provides the first demonstration that dysfunctional telomeres in hCSCs are biomarkers of aging and heart failure. The biomarkers of cellular senescence identified here can be used to define the birth date of hCSCs and to sort young cells with potential therapeutic efficacy.


Asunto(s)
Senescencia Celular , Insuficiencia Cardíaca/complicaciones , Corazón/fisiopatología , Miocitos Cardíacos/patología , Células Madre/citología , Células Madre/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Estudios de Casos y Controles , Diferenciación Celular , Proliferación Celular , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/etiología , Neoplasias Experimentales/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telomerasa , Telómero/genética
20.
Circ Res ; 107(11): 1374-86, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21088285

RESUMEN

RATIONALE: The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. OBJECTIVE: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. METHODS AND RESULTS: The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men. CONCLUSIONS: The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Corazón/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/fisiología , Muerte Celular/fisiología , Células Cultivadas , Femenino , Corazón/anatomía & histología , Humanos , Masculino , Persona de Mediana Edad , Caracteres Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...