Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 13(22): 24542-24559, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845112

RESUMEN

Mesenchymal stem cells (MSCs) experience functional decline with systemic aging, resulting in reduced proliferation, increased senescence, and lower differentiation potential. The placenta represents a valuable source of MSCs, but the possible effect of donor age on the properties of placenta-derived mesenchymal stem cells (PDMSCs) has not been thoroughly studied. Thus, the aim of this study was to underscore the effect of maternal age on the biological characteristics and stemness properties of PDMSCs. PDMSCs were isolated from 5 donor age groups (A: 18-21, B: 22-25, C: 26-30, D:31-35 and E: ≥36 years) for comparison of morphological, proliferative and differentiation properties. The pluripotency markers NANOG, OCT4, and SSEA4, as well as multipotency and differentiation markers, showed higher expression in PDMSCs from mothers aged 22-35 years, with up to a 7-fold increase in adipogenesis. Cumulative population doubling, cell growth curves, and colony-forming unit-fibroblast assays revealed higher self-renewal ability in donors 26-30 years old. An increase in the proliferative characteristics of PDMSCs correlated with increased telomere shortening, suggesting that shorter telomere lengths could be related to cellular division rather than aging. A clear understanding of the effect of maternal age on MSC regenerative potential will assist in increasing the effectiveness of future cell therapies.


Asunto(s)
Diferenciación Celular/fisiología , Edad Materna , Células Madre Mesenquimatosas/fisiología , Placenta/citología , Acortamiento del Telómero/fisiología , Adolescente , Adulto , Proliferación Celular/fisiología , Femenino , Humanos , Embarazo , Adulto Joven
2.
Int J Infect Dis ; 108: 588-591, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34107326

RESUMEN

We report a case of reinfection by SARS-CoV-2 with the second virus harboring amino acid changes in the Spike protein (141-143del, D215A, ins215AGY, L452R, D614G), orf1a, helicase, orf3a, and Nucleocapside. The virus associated with the reinfection, from an endemic lineage containing the S:L452R immune escape mutation, was circulating in Panama at the time.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Proteínas de la Nucleocápside , Reinfección , Glicoproteína de la Espiga del Coronavirus/genética
3.
Immunohorizons ; 4(10): 634-647, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067399

RESUMEN

Dengue virus (DENV) is a significant cause of morbidity in many regions of the world, with children at the greatest risk of developing severe dengue. NK cells, characterized by their ability to rapidly recognize and kill virally infected cells, are activated during acute DENV infection. However, their role in viral clearance versus pathogenesis has not been fully elucidated. Our goal was to profile the NK cell receptor-ligand repertoire to provide further insight into the function of NK cells during pediatric and adult DENV infection. We used mass cytometry to phenotype isolate NK cells and PBMCs from a cohort of DENV-infected children and adults. Using unsupervised clustering, we found that pediatric DENV infection leads to a decrease in total NK cell frequency with a reduction in the percentage of CD56dimCD38bright NK cells and an increase in the percentage of CD56dimperforinbright NK cells. No such changes were observed in adults. Next, we identified markers predictive of DENV infection using a differential state test. In adults, NK cell expression of activation markers, including CD69, perforin, and Fas-L, and myeloid cell expression of activating NK cell ligands, namely Fas, were predictive of infection. In contrast, increased NK cell expression of the maturation marker CD57 and myeloid cell expression of inhibitory ligands, such as HLA class I molecules, were predictive of pediatric DENV infection. These findings suggest that acute pediatric DENV infection may result in diminished NK cell activation, which could contribute to enhanced pathogenesis and disease severity.


Asunto(s)
Antígenos CD57/inmunología , Dengue/inmunología , Citometría de Flujo/métodos , Células Asesinas Naturales/inmunología , Receptores de Células Asesinas Naturales/inmunología , Adolescente , Adulto , Anticuerpos Monoclonales/inmunología , Biomarcadores , Niño , Preescolar , Dengue/sangre , Proteína Ligando Fas/metabolismo , Femenino , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Perforina/metabolismo , Coloración y Etiquetado , Adulto Joven
4.
Am J Trop Med Hyg ; 103(6): 2429-2437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124532

RESUMEN

Madariaga virus (MADV) has recently been associated with severe human disease in Panama, where the closely related Venezuelan equine encephalitis virus (VEEV) also circulates. In June 2017, a fatal MADV infection was confirmed in a community of Darien Province. We conducted a cross-sectional outbreak investigation with human and mosquito collections in July 2017, where sera were tested for alphavirus antibodies and viral RNA. In addition, by applying a catalytic, force-of-infection (FOI) statistical model to two serosurveys from Darien Province in 2012 and 2017, we investigated whether endemic or epidemic alphavirus transmission occurred historically. In 2017, MADV and VEEV IgM seroprevalences were 1.6% and 4.4%, respectively; IgG antibody prevalences were MADV: 13.2%, VEEV: 16.8%, Una virus (UNAV): 16.0%, and Mayaro virus: 1.1%. Active viral circulation was not detected. Evidence of MADV and UNAV infection was found near households, raising questions about its vectors and enzootic transmission cycles. Insomnia was associated with MADV and VEEV infections, depression symptoms were associated with MADV, and dizziness with VEEV and UNAV. Force-of-infection analyses suggest endemic alphavirus transmission historically, with recent increased human exposure to MADV and VEEV in Aruza and Mercadeo, respectively. The lack of additional neurological cases suggests that severe MADV and VEEV infections occur only rarely. Our results indicate that over the past five decades, alphavirus infections have occurred at low levels in eastern Panama, but that MADV and VEEV infections have recently increased-potentially during the past decade. Endemic infections and outbreaks of MADV and VEEV appear to differ spatially in some locations of eastern Panama.


Asunto(s)
Encefalomielitis Equina Oriental/epidemiología , Encefalomielitis Equina Venezolana/epidemiología , Agricultores/estadística & datos numéricos , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Alphavirus/inmunología , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/fisiopatología , Animales , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/fisiopatología , Virus Chikungunya/inmunología , Niño , Preescolar , Estudios Transversales , Depresión/fisiopatología , Mareo/fisiopatología , Virus de la Encefalitis Equina del Este/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Oriental/inmunología , Encefalomielitis Equina Oriental/fisiopatología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/fisiopatología , Enfermedades Endémicas , Epidemias , Fatiga/fisiopatología , Femenino , Vivienda/estadística & datos numéricos , Humanos , Inmunoglobulina G , Inmunoglobulina M , Masculino , Persona de Mediana Edad , Mosquitos Vectores/virología , Panamá/epidemiología , Virus de los Bosques Semliki/inmunología , Estudios Seroepidemiológicos , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Adulto Joven
5.
Artículo en Inglés | MEDLINE | ID: mdl-31396492

RESUMEN

Dengue virus (DENV) is the most prevalent mosquito-borne virus in the world and a major cause of morbidity in the tropics and subtropics. Upregulation of HLA class I molecules has long been considered a feature of DENV infection, yet this has not been evaluated in the setting of natural infection. Natural killer (NK) cells, an innate immune cell subset critical for mounting an early response to viral infection, are inhibited by self HLA class I, suggesting that upregulation of HLA class I during DENV infection could dampen the NK cell response. Here we addressed whether upregulation of HLA class I molecules occurs during in vivo DENV infection and, if so, whether this suppresses the NK cell response. We found that HLA class I expression was indeed upregulated during acute DENV infection across multiple cell lineages in vivo. To better understand the role of HLA class I upregulation, we infected primary human monocytes, a major target of DENV infection, in vitro. Upregulation of total HLA class I is dependent on active viral replication and is mediated in part by cytokines and other soluble factors induced by infection, while upregulation of HLA-E occurs in the presence of replication-incompetent virus. Importantly, blocking DENV-infected monocytes with a pan-HLA class I Fab nearly doubles the frequency of degranulating NK cells, while blocking HLA-E does not significantly improve the NK cell response. These findings demonstrate that upregulation of HLA class I during DENV infection suppresses the NK cell response, potentially contributing to disease pathogenesis.


Asunto(s)
Virus del Dengue/inmunología , Dengue/patología , Antígenos de Histocompatibilidad Clase I/biosíntesis , Tolerancia Inmunológica , Inmunidad Innata , Células Asesinas Naturales/inmunología , Regulación hacia Arriba , Línea Celular , Dengue/inmunología , Virus del Dengue/crecimiento & desarrollo , Perfilación de la Expresión Génica , Humanos , Monocitos/inmunología , Monocitos/virología
6.
Am J Trop Med Hyg ; 98(6): 1798-1804, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29737271

RESUMEN

Members of the genera Alphavirus (family Togaviridae) and Flavivirus (family Flaviridae) are important zoonotic human and equine etiologic agents of neurologic diseases in the New World. In 2010, an outbreak of Madariaga virus (MADV; formerly eastern equine encephalitis virus) and Venezuelan equine encephalitis virus (VEEV) infections was reported in eastern Panamá. We further characterized the epidemiology of the outbreak by studying household contacts of confirmed human cases and of equine cases with neurological disease signs. Serum samples were screened using a hemagglutination inhibition test, and human results were confirmed using plaque reduction neutralization tests. A generalized linear model was used to evaluate the human MADV and VEEV seroprevalence ratios by age (in tercile) and gender. Overall, antibody prevalence for human MADV infection was 19.4%, VEEV 33.3%, and Mayaro virus 1.4%. In comparison with individuals aged 2-20 years, people from older age groups (21-41 and > 41 years) were five times more likely to have antibodies against VEEV, whereas the MADV prevalence ratio was independent of age. The overall seroprevalence of MADV in equids was 26.3%, VEEV 29.4%, West Nile virus (WNV) 2.6%, and St. Louis encephalitis virus (SLEV) was 63.0%. Taken together, our results suggest that multiple arboviruses are circulating in human and equine populations in Panamá. Our findings of a lack of increase in the seroprevalence ratio with age support the hypothesis of recent MADV exposure to people living in the affected region.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Alphavirus/inmunología , Brotes de Enfermedades , Encefalitis/epidemiología , Infecciones por Flavivirus/epidemiología , Flavivirus/inmunología , Enfermedades de los Caballos/epidemiología , Adolescente , Adulto , Alphavirus/aislamiento & purificación , Infecciones por Alphavirus/virología , Animales , Niño , Preescolar , Estudios Transversales , Encefalitis/virología , Composición Familiar , Femenino , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/virología , Enfermedades de los Caballos/virología , Caballos , Humanos , Masculino , Panamá/epidemiología , Estudios Seroepidemiológicos , Adulto Joven , Zoonosis
7.
PLoS Negl Trop Dis ; 10(4): e0004554, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27101567

RESUMEN

BACKGROUND: Neurotropic arboviral infections are an important cause of encephalitis. A zoonotic, vector-borne alphavirus, Madariaga virus (MADV; formerly known as South American eastern equine encephalitis virus), caused its first documented human outbreak in 2010 in Darien, Panama, where the genetically similar Venezuelan equine encephalitis virus (VEEV) is endemic. We report the results of a seroprevalence survey of animals and humans, illustrating contrasting features of MADV and VEEV ecology and epidemiology. METHODS: Small mammals were trapped in 42 sites in Darien, Panama, using Sherman traps, Tomahawk traps, and mist nets for bats. Blood was tested for the presence of neutralizing antibodies to MADV and VEEV. In addition, bird sera collected in 2007 in Chagres, Panama, were tested for MADV and VEEV neutralizing antibodies. Viremia was ascertained by RT-PCR. Human exposure to these two viruses was determined by IgG ELISA, followed by plaque reduction neutralization tests. To identify relevant risk factors for MADV or VEEV exposure, logistic regression analysis was performed, and the most parsimonious model was selected based on the Akaike information criterion. RESULTS: The animal survey yielded 32 bats (16 species), 556 rodents (12 species), and 20 opossums (4 species). The short-tailed cane mouse (Zygodontomys brevicauda) found abundantly in pasture and farms, had the highest MADV seroprevalence (8.3%). For VEEV, the shrub and forest-dwelling long-whiskered rice rat (Transandinomys bolivaris) had the highest seroprevalence (19.0%). Viremia was detected in one animal (Z. brevicauda). Of the 159 bird sera (50 species) tested, none were positive for either virus. In humans (n = 770), neutralizing antibodies to MADV and VEEV were present in 4.8% and 31.5%, respectively. MADV seropositivity was positively associated with cattle ranching, farming, and fishing. Having VEEV antibodies and shrubs near the house diminished risk. Age, forest work, farming and fishing were risk factors for VEEV, while having MADV antibodies, glazed windows, waste pick-up and piped water were protective. CONCLUSION: Our findings suggest that the short-tailed cane mouse and the long-whiskered rice rat serve as hosts for MADV and VEEV, respectively. The preferred habitat of these rodent species coincides with areas associated with human infection risk. Our findings also indicate that MADV emerged recently in humans, and that the transmission cycles of these two sympatric alphaviruses differ spatially and in host utilization.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Alphavirus/inmunología , Anticuerpos Antivirales/sangre , Encefalitis Viral/epidemiología , Encefalitis Viral/veterinaria , Zoonosis/epidemiología , Alphavirus/aislamiento & purificación , Infecciones por Alphavirus/virología , Animales , Anticuerpos Neutralizantes/sangre , Aves , Estudios Transversales , Reservorios de Enfermedades , Encefalitis Viral/virología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Mamíferos , Pruebas de Neutralización , Panamá/epidemiología , ARN Viral/sangre , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estudios Seroepidemiológicos , Ensayo de Placa Viral , Viremia/diagnóstico , Zoonosis/virología
8.
Am J Trop Med Hyg ; 93(5): 1014-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26304915

RESUMEN

Viruses in the genus Flavivirus (family Flaviviridae) include many arthropod-borne viruses of public health and veterinary importance. However, during the past two decades an explosion of novel insect-specific flaviviruses (ISFs), some closely related to vertebrate pathogens, have been discovered. Although many flavivirus pathogens of vertebrates have been isolated from naturally infected mosquitoes in Panama, ISFs have not previously been reported from the country. This report describes the isolation and characterization of a novel ISF, tentatively named Mercadeo virus (MECDV), obtained from Culex spp. mosquitoes collected in Panama. Two MECDV isolates were sequenced and cluster phylogenetically with cell-fusing agent virus (CFAV) and Nakiwogo virus (NAKV) to form a distinct lineage within the insect-specific group of flaviviruses.


Asunto(s)
Culex/virología , Infecciones por Flavivirus/virología , Flavivirus/clasificación , Insectos Vectores/virología , Animales , Secuencia de Bases , Femenino , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/ultraestructura , Infecciones por Flavivirus/epidemiología , Humanos , Masculino , Datos de Secuencia Molecular , Panamá/epidemiología , Filogenia , Estudios Retrospectivos , Análisis de Secuencia de ADN
9.
Front Immunol ; 5: 192, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24829565

RESUMEN

The innate immune response, in addition to the B- and T-cell response, plays a role in protection against dengue virus (DENV) infection and the degree of disease severity. Early activation of natural killer (NK) cells and type-I interferon-dependent immunity may be important in limiting viral replication during the early stages of DENV infection and thus reducing subsequent pathogenesis. NK cells may also produce cytokines that reduce inflammation and tissue injury. On the other hand, NK cells are also capable of inducing liver injury at early-time points of DENV infection. In vitro, NK cells can kill antibody-coated DENV-infected cells through antibody-dependent cell-mediated cytotoxicity. In addition, NK cells may directly recognize DENV-infected cells through their activating receptors, although the increase in HLA class I expression may allow infected cells to escape the NK response. Recently, genome-wide association studies have shown an association between MICB and MICA, which encode ligands of the activating NK receptor NKG2D, and dengue disease outcome. This review focuses on recognition of DENV-infected cells by NK cells and on the regulation of expression of NK cell ligands by DENV.

10.
N Engl J Med ; 369(8): 732-44, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23964935

RESUMEN

BACKGROUND: The eastern equine encephalitis (EEE) and Venezuelan equine encephalitis (VEE) viruses are pathogens that infect humans and horses in the Americas. Outbreaks of neurologic disease in humans and horses were reported in Panama from May through early August 2010. METHODS: We performed antibody assays and tests to detect viral RNA and isolate the viruses in serum samples from hospitalized patients. Additional cases were identified with enhanced surveillance. RESULTS: A total of 19 patients were hospitalized for encephalitis. Among them, 7 had confirmed EEE, 3 had VEE, and 1 was infected with both viruses; 3 patients died, 1 of whom had confirmed VEE. The clinical findings for patients with EEE included brain lesions, seizures that evolved to status epilepticus, and neurologic sequelae. An additional 99 suspected or probable cases of alphavirus infection were detected during active surveillance. In total, 13 cases were confirmed as EEE, along with 11 cases of VEE and 1 case of dual infection. A total of 50 cases in horses were confirmed as EEE and 8 as VEE; mixed etiologic factors were associated with 11 cases in horses. Phylogenetic analyses of isolates from 2 cases of equine infection with the EEE virus and 1 case of human infection with the VEE virus indicated that the viruses were of enzootic lineages previously identified in Panama rather than new introductions. CONCLUSIONS: Cases of EEE in humans in Latin America may be the result of ecologic changes that increased human contact with enzootic transmission cycles, genetic changes in EEE viral strains that resulted in increased human virulence, or an altered host range. (Funded by the National Institutes of Health and the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama.).


Asunto(s)
Brotes de Enfermedades , Virus de la Encefalitis Equina del Este , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Adolescente , Animales , Anticuerpos Antivirales/sangre , Niño , Preescolar , Virus de la Encefalitis Equina del Este/genética , Virus de la Encefalitis Equina del Este/inmunología , Virus de la Encefalitis Equina del Este/aislamiento & purificación , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Oriental/epidemiología , Encefalomielitis Equina Oriental/veterinaria , Encefalomielitis Equina Venezolana/epidemiología , Encefalomielitis Equina Venezolana/veterinaria , Resultado Fatal , Femenino , Enfermedades de los Caballos/epidemiología , Caballos , Humanos , Lactante , Masculino , Panamá/epidemiología , Filogenia , ARN Viral/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...