Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38347114

RESUMEN

BACKGROUND: CALGB 90401 (Alliance) was a phase III trial of 1050 patients with metastatic castration-resistant prostate cancer (mCRPC) comparing docetaxel, prednisone, bevacizumab (DP+B) versus DP alone. While this trial did not show an improvement in overall survival (OS), there were improved intermediate outcomes suggesting that subsets of men may derive benefit from this combination. The purpose of this analysis was to identify prognostic and predictive biomarkers associated with OS and progression-free survival (PFS) benefit from DP+B. METHODS: Baseline EDTA plasma samples from 650 consenting patients were analyzed for 24 biomarkers. The proportional hazards model was utilized to test for the prognostic and predictive importance of the biomarkers for OS. The statistically significant biomarkers of OS were further investigated for prognostic and predictive importance for other secondary outcomes. RESULTS: 15 markers [ICAM-1, VEGF-R3, TIMP-1, TSP-2, Ang-2, Her-3, Osteopontin (OPN), PlGF, VCAM-1, HGF, VEGF, Chromogranin A, IL-6, VEGF-R1, BMP-9] were prognostic of OS, while 9 markers (ICAM-1, VEGF-R3, Her-3, TIMP-1, Ang-2, OPN, PlGF, HGF, and VEGF) were also prognostic of PFS. All markers were statistically significant in univariate analyses after adjustment for multiplicity (FDR < 0.1). In multivariable analyses of OS adjusting for risk score, seven markers had FDR < 0.1, including ICAM-1, VEGF-R3, TIMP-1, Ang-2, VEGF, TSP-2 and HGF. In unadjusted analysis, OPN was predictive of PFS improvement with DP+B, in both univariate and multivariable analysis. However, none of the biomarkers tested were predictive of clinical outcomes after adjusting for multiple comparisons. CONCLUSIONS: Multiple biomarkers were identified in CALGB 90401 as prognostic of clinical outcomes but not predictive of OS. While OPN may have promise as a potential biomarker for anti-angiogenic therapies, further mechanistic and clinical studies are needed to determine the underlying biology and potential clinical application.

2.
Res Sq ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38405800

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.

3.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352340

RESUMEN

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition. Significance: PCa that escapes therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic PCa and implicates CDK2 inhibition as novel therapeutic target for this most lethal subtype of PCa.

5.
Cancer Discov ; 14(3): 424-445, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197680

RESUMEN

Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE: Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Metilación de ADN , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Biopsia , Ácidos Nucleicos Libres de Células/genética
6.
PNAS Nexus ; 3(1): pgae002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38250514

RESUMEN

Although the treatment armamentarium for patients with metastatic prostate cancer has improved recently, treatment options after progression on cabazitaxel (CBZ) are limited. To identify the mechanisms underlying CBZ resistance and therapeutic targets, we performed single-cell RNA sequencing of circulating tumor cells (CTCs) from patients with CBZ-resistant prostate cancer. Cells were clustered based on gene expression profiles. In silico screening was used to nominate candidate drugs for overcoming CBZ resistance in castration-resistant prostate cancer. CTCs were divided into three to four clusters, reflecting intrapatient tumor heterogeneity in refractory prostate cancer. Pathway analysis revealed that clusters in two cases showed up-regulation of the oxytocin (OXT) receptor-signaling pathway. Spatial gene expression analysis of CBZ-resistant prostate cancer tissues confirmed the heterogeneous expression of OXT-signaling molecules. Cloperastine (CLO) had significant antitumor activity against CBZ-resistant prostate cancer cells. Mass spectrometric phosphoproteome analysis revealed the suppression of OXT signaling specific to CBZ-resistant models. These results support the potential of CLO as a candidate drug for overcoming CBZ-resistant prostate cancer via the inhibition of OXT signaling.

7.
J Natl Cancer Inst ; 116(1): 115-126, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-37676819

RESUMEN

BACKGROUND: The phase 3 CALGB 90203 (Alliance) trial evaluated neoadjuvant chemohormonal therapy for high-risk localized prostate cancer before radical prostatectomy. We dissected the molecular features of post-treated tumors with long-term clinical outcomes to explore mechanisms of response and resistance to chemohormonal therapy. METHODS: We evaluated 471 radical prostatectomy tumors, including 294 samples from 166 patients treated with 6 cycles of docetaxel plus androgen deprivation therapy before radical prostatectomy and 177 samples from 97 patients in the control arm (radical prostatectomy alone). Targeted DNA sequencing and RNA expression of tumor foci and adjacent noncancer regions were analyzed in conjunction with pathologic changes and clinical outcomes. RESULTS: Tumor fraction estimated from DNA sequencing was significantly lower in post-treated tumor tissues after chemohormonal therapy compared with controls. Higher tumor fraction after chemohormonal therapy was associated with aggressive pathologic features and poor outcomes, including prostate-specific antigen-progression-free survival. SPOP alterations were infrequently detected after chemohormonal therapy, while TP53 alterations were enriched and associated with shorter overall survival. Residual tumor fraction after chemohormonal therapy was linked to higher expression of androgen receptor-regulated genes, cell cycle genes, and neuroendocrine genes, suggesting persistent populations of active prostate cancer cells. Supervised clustering of post-treated high-tumor-fraction tissues identified a group of patients with elevated cell cycle-related gene expression and poor clinical outcomes. CONCLUSIONS: Distinct recurrent prostate cancer genomic and transcriptomic features are observed after exposure to docetaxel and androgen deprivation therapy. Tumor fraction assessed by DNA sequencing quantifies pathologic response and could be a useful trial endpoint or prognostic biomarker. TP53 alterations and high cell cycle transcriptomic activity are linked to aggressive residual disease, despite potent chemohormonal therapy.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Terapia Neoadyuvante , Docetaxel , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/uso terapéutico , Resultado del Tratamiento , Recurrencia Local de Neoplasia/cirugía , Antígeno Prostático Específico , Prostatectomía , Proteínas Nucleares , Proteínas Represoras
8.
Eur Urol ; 85(3): 193-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104015

RESUMEN

CONTEXT: Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in most prostate cancers and exploited as a target for PSMA-targeted therapies. Different approaches to target PSMA-expressing cancer cells have been developed, showing promising results in clinical trials. OBJECTIVE: To discuss the regulation of PSMA expression and the main PSMA-targeted therapeutic concepts illustrating their clinical development and rationalizing combination approaches with examples. EVIDENCE ACQUISITION: We performed a detailed literature search using PubMed and reviewed the American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to September 2023. EVIDENCE SYNTHESIS: We present an overarching description of the different strategies to target PSMA. The outcomes of PSMA-targeted therapies strongly rely on surface-bound PSMA expression. However, PSMA heterogeneity at different levels (interpatient and inter/intratumoral) limits the efficacy of PSMA-targeted therapies. We highlight the molecular mechanisms governing PSMA regulation, the understanding of which is crucial to designing therapeutic strategies aimed at upregulating PSMA expression. Thus far, homeobox B13 (HOXB13) and androgen receptor (AR) have emerged as critical transcription factors positively and negatively regulating PSMA expression, respectively. Furthermore, epigenetic regulation of PSMA has been also reported recently. In addition, many established therapeutic approaches harbor the potential to upregulate PSMA levels as well as potentiate DNA damage mediated by current radioligands. CONCLUSIONS: PSMA-targeted therapies are rapidly advancing, but their efficacy is strongly limited by the heterogeneous expression of the target. A thorough comprehension of how PSMA is regulated will help improve the outcomes through increasing PSMA expression and will provide the basis for synergistic combination therapies. PATIENT SUMMARY: Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancers. PSMA-targeted therapies have shown promising results, but the heterogeneous expression of PSMA limits their efficacy. We propose to better elucidate the regulation of PSMA expression to increase the levels of the target and improve the therapeutic outcomes.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Epigénesis Genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Antígenos de Superficie , Antígeno Prostático Específico/genética , Resultado del Tratamiento
9.
Nat Cell Biol ; 25(12): 1726-1728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049603
10.
Sci Transl Med ; 15(722): eadf6732, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967200

RESUMEN

Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.


Asunto(s)
Antineoplásicos , Tumores Neuroendocrinos , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Metilación de ADN/genética , Decitabina/farmacología , Decitabina/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Tumores Neuroendocrinos/tratamiento farmacológico , Factores de Transcripción/metabolismo , Antineoplásicos/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
12.
NPJ Precis Oncol ; 7(1): 91, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704749

RESUMEN

Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease (n = 6) and nonbrain prostate cancer metastases (n = 36). This first whole genome sequencing study of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches.

13.
Cancer Res Commun ; 3(8): 1447-1459, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37546702

RESUMEN

Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.g., HMMR and CESLR3). We further showed that cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) knockdown results in reduced NEPC tumor cell proliferation and migration in vitro. We provide in vivo data including laser capture microdissection followed by RNA-seq data supporting a causal role of CELSR3 in the development and/or maintenance of the phenotype associated with NEPC. Finally, we provide initial data that suggests CELSR3 is a target for T-cell redirection therapeutics. Further work is now needed to fully evaluate the utility of targeting CELSR3 with T-cell redirection or other similar therapeutics as a potential new strategy for patients with NEPC. Significance: The development of effective treatment for patients with NEPC remains an unmet clinical need. We have identified specific surface proteins, including CELSR3, that may serve as novel biomarkers or therapeutic targets for NEPC.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Tumores Neuroendocrinos/genética , Próstata/metabolismo , Membrana Celular/metabolismo , Cadherinas/genética
14.
Cancer Discov ; 13(8): 1771-1788, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37470668

RESUMEN

Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE: Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Linaje de la Célula/genética , Plasticidad de la Célula/genética , Neoplasias/genética , Epigénesis Genética , Microambiente Tumoral/genética
15.
J Clin Invest ; 133(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347559

RESUMEN

CXCR7 is an atypical chemokine receptor that recruits ß-arrestin (ARRB2) and internalizes into clathrin-coated intracellular vesicles where the complex acts as a scaffold for cytoplasmic kinase assembly and signal transduction. Here, we report that CXCR7 was elevated in the majority of prostate cancer (PCa) cases with neuroendocrine features (NEPC). CXCR7 markedly induced mitotic spindle and cell cycle gene expression. Mechanistically, we identified Aurora Kinase A (AURKA), a key regulator of mitosis, as a novel target that was bound and activated by the CXCR7-ARRB2 complex. CXCR7 interacted with proteins associated with microtubules and golgi, and, as such, the CXCR7-ARRB2-containing vesicles trafficked along the microtubules to the pericentrosomal golgi apparatus, where the complex interacted with AURKA. Accordingly, CXCR7 promoted PCa cell proliferation and tumor growth, which was mitigated by AURKA inhibition. In summary, our study reveals a critical role of CXCR7-ARRB2 in interacting and activating AURKA, which can be targeted by AURKA inhibitors to benefit a subset of patients with NEPC.


Asunto(s)
Neoplasias de la Próstata , Receptores CXCR , Masculino , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Transducción de Señal , Receptores CXCR/genética , Receptores CXCR/metabolismo , Neoplasias de la Próstata/patología , Proliferación Celular , Línea Celular Tumoral
16.
Clin Cancer Res ; 29(15): 2933-2943, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223924

RESUMEN

PURPOSE: Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN: In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS: In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS: NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.


Asunto(s)
Carcinoma Neuroendocrino , Tumores Neuroendocrinos , Neoplasias de la Próstata , Masculino , Humanos , Estudios Retrospectivos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/metabolismo , Carcinoma Neuroendocrino/patología , Microambiente Tumoral/genética
17.
Eur J Cancer ; 185: 178-215, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003085

RESUMEN

BACKGROUND: Innovations in imaging and molecular characterisation together with novel treatment options have improved outcomes in advanced prostate cancer. However, we still lack high-level evidence in many areas relevant to making management decisions in daily clinical practise. The 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) addressed some questions in these areas to supplement guidelines that mostly are based on level 1 evidence. OBJECTIVE: To present the voting results of the APCCC 2022. DESIGN, SETTING, AND PARTICIPANTS: The experts voted on controversial questions where high-level evidence is mostly lacking: locally advanced prostate cancer; biochemical recurrence after local treatment; metastatic hormone-sensitive, non-metastatic, and metastatic castration-resistant prostate cancer; oligometastatic prostate cancer; and managing side effects of hormonal therapy. A panel of 105 international prostate cancer experts voted on the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The panel voted on 198 pre-defined questions, which were developed by 117 voting and non-voting panel members prior to the conference following a modified Delphi process. A total of 116 questions on metastatic and/or castration-resistant prostate cancer are discussed in this manuscript. In 2022, the voting was done by a web-based survey because of COVID-19 restrictions. RESULTS AND LIMITATIONS: The voting reflects the expert opinion of these panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results are reported in the supplementary material. We report here on topics in metastatic, hormone-sensitive prostate cancer (mHSPC), non-metastatic, castration-resistant prostate cancer (nmCRPC), metastatic castration-resistant prostate cancer (mCRPC), and oligometastatic and oligoprogressive prostate cancer. CONCLUSIONS: These voting results in four specific areas from a panel of experts in advanced prostate cancer can help clinicians and patients navigate controversial areas of management for which high-level evidence is scant or conflicting and can help research funders and policy makers identify information gaps and consider what areas to explore further. However, diagnostic and treatment decisions always have to be individualised based on patient characteristics, including the extent and location of disease, prior treatment(s), co-morbidities, patient preferences, and treatment recommendations and should also incorporate current and emerging clinical evidence and logistic and economic factors. Enrolment in clinical trials is strongly encouraged. Importantly, APCCC 2022 once again identified important gaps where there is non-consensus and that merit evaluation in specifically designed trials. PATIENT SUMMARY: The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with healthcare providers worldwide. At each APCCC, an expert panel votes on pre-defined questions that target the most clinically relevant areas of advanced prostate cancer treatment for which there are gaps in knowledge. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients and their relatives as part of shared and multidisciplinary decision-making. This report focuses on the advanced setting, covering metastatic hormone-sensitive prostate cancer and both non-metastatic and metastatic castration-resistant prostate cancer. TWITTER SUMMARY: Report of the results of APCCC 2022 for the following topics: mHSPC, nmCRPC, mCRPC, and oligometastatic prostate cancer. TAKE-HOME MESSAGE: At APCCC 2022, clinically important questions in the management of advanced prostate cancer management were identified and discussed, and experts voted on pre-defined consensus questions. The report of the results for metastatic and/or castration-resistant prostate cancer is summarised here.


Asunto(s)
COVID-19 , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Diagnóstico por Imagen , Hormonas
18.
Nat Cancer ; 4(5): 699-715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038004

RESUMEN

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral
19.
Mol Cancer Res ; 21(6): 497-510, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052520

RESUMEN

Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética
20.
J Clin Oncol ; 41(18): 3352-3362, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36996380

RESUMEN

PURPOSE: Enzalutamide and abiraterone both target androgen receptor signaling but via different mechanisms. The mechanism of action of one drug may counteract the resistance pathways of the other. We sought to determine whether the addition of abiraterone acetate and prednisone (AAP) to enzalutamide prolongs overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the first-line setting. PATIENTS AND METHODS: Men with untreated mCRPC were randomly assigned (1:1) to receive first-line enzalutamide with or without AAP. The primary end point was OS. Toxicity, prostate-specific antigen declines, pharmacokinetics, and radiographic progression-free survival (rPFS) were also examined. Data were analyzed using an intent-to-treat approach. The Kaplan-Meier estimate and the stratified log-rank statistic were used to compare OS between treatments. RESULTS: In total, 1,311 patients were randomly assigned: 657 to enzalutamide and 654 to enzalutamide plus AAP. OS was not statistically different between the two arms (median, 32.7 [95% CI, 30.5 to 35.4] months for enzalutamide v 34.2 [95% CI, 31.4 to 37.3] months for enzalutamide and AAP; hazard ratio [HR], 0.89; one-sided P = .03; boundary nominal significance level = .02). rPFS was longer in the combination arm (median rPFS, 21.3 [95% CI, 19.4 to 22.9] months for enzalutamide v 24.3 [95% CI, 22.3 to 26.7] months for enzalutamide and AAP; HR, 0.86; two-sided P = .02). However, pharmacokinetic clearance of abiraterone was 2.2- to 2.9-fold higher when administered with enzalutamide, compared with clearance values for abiraterone alone. CONCLUSION: The addition of AAP to enzalutamide for first-line treatment of mCRPC was not associated with a statistically significant benefit in OS. Drug-drug interactions between the two agents resulting in increased abiraterone clearance may partly account for this result, although these interactions did not prevent the combination regimen from having more nonhematologic toxicity.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Acetato de Abiraterona/efectos adversos , Prednisona/efectos adversos , Nitrilos/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...