Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 59(13): D131-D137, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400635

RESUMEN

This paper presents the development of a biosensor based on optical fiber, using a polyclonal antibody kisspeptin receptor as a biological recognition element that is connected to puberty onset and may also help to suppress metastasis in melanoma breast cancer. The fiber surface was chemically prepared to immobilize the antibody. The structural homogeneity of the biosensor, at each stage of the self-assembly, was characterized by Fourier transform infrared spectroscopy and by measurements of the transmission at the output of the biosensor. The morphological homogeneity analysis was performed by optical microscopy and scanning electron microscopy. The biosensor developed was checked to detect kisspeptin in brain tissues by spectral transmission using a superluminescent diode. The data were analyzed using principal component analysis. The interaction of the kisspeptin with its counterpart by means of the evolution of the transmission spectrum as a function of time was observed.


Asunto(s)
Kisspeptinas/análisis , Fibras Ópticas , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Anticuerpos/química , Técnicas Biosensibles , Encéfalo , Humanos , Proteínas Inmovilizadas/química , Límite de Detección , Microscopía , Análisis de Componente Principal , Dióxido de Silicio/química
2.
Opt Express ; 25(21): 25036-25045, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041175

RESUMEN

We report the dynamics of dissipative solitons in a ring cavity passively mode-locked fiber laser with a strict control of the polarization state. We study the relation between the polarization state of the pulses propagating in the cavity and the regimes of generation. We have found that at pulse ellipticities between 5° and 15°, the laser generates one bunch of pulses in the cavity, while at higher ellipticities the laser generates multiple bunches. At constant ellipticity we rotated the polarization azimuth and observed a regime transition from the generation of noise-like pulses (NLP) to that of soliton crystal. The NLP regime was found when the azimuth was rotated towards smaller low-power transmission through the polarizer. The number of solitons in the soliton crystal also depended on the azimuth in a straightforward way: the higher the initial transmission, the bigger the number of solitons.

3.
Opt Lett ; 41(24): 5704-5707, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973494

RESUMEN

We measured the instantaneous frequency profile of two different dissipative soliton resonant (DSR) light pulses, the usual flat-top and less-common trapezoid-shaped light pulses. The DSR light pulses were provided by an ytterbium-doped polarization-maintaining fiber ring passively mode-locked laser using the adequately selected amount of net-normal dispersion. We confirmed that the DSR light pulses have a (moderately) low linear chirp across the pulse, except at the edges, where the chirp changes exponentially. This unique instantaneous frequency behavior can be succinctly resumed by the following parameters: linear chirp slope and leading and trailing chirp lifetimes. As the pump power increases, the linear chirp slope decreases, whereas the leading and trailing chirp lifetimes do not show an appreciable change. The results are compared with previous theoretical works.

4.
Opt Lett ; 41(21): 4927-4930, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27805652

RESUMEN

Nonlinear polarization dynamics of single and paired pulses in twisted fibers is experimentally and numerically studied. Accompanying a dramatic difference in the output spectrum when a single- or double-amplified soliton pulse is launched in the fiber, the output polarization for the two cases also reveals very different characteristics.

5.
Opt Express ; 24(9): 9966-74, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137606

RESUMEN

We investigated the dissipative solitons resonance in an ytterbium-doped fiber ring laser in which all the elements are polarization maintaining (PM). A semiconductor saturable absorber mirror was used as a mode-locker. The cavity included a normal dispersion single-mode fiber (SMF) and an anomalous dispersion photonic crystal fiber. The change of the length of the PM SMF allows the variation of the net-normal dispersion of the cavity in the range from 0.022 ps2 to 0.262 ps2. As the absolute value of the net-normal dispersion increases from 0.022 ps2 to 0.21 ps2, a square-shaped single pulse transformed to a single right-angle trapezoid-shaped pulse, and, at the dispersion of 0.262 ps2, to multiple right-angle trapezoid-shaped pulses, per round-trip.

6.
Biomed Opt Express ; 6(10): 4079-87, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26504655

RESUMEN

In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.

7.
Opt Express ; 21(5): 6509-18, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482221

RESUMEN

An experimental and theoretical study about selective photodeposition of metallic zinc nanoparticles onto an optical fiber end is presented. It is well known that metallic nanoparticles possess a high absorption coefficient and therefore trapping and manipulation is more challenging than dielectric particles. Here, we demonstrate a novel trapping mechanism that involves laser-induced convection flow (due to heat transfer from the zinc particles) that partially compensates both absorption and scattering forces in the vicinity of the fiber end. The gradient force is too small and plays no role on the deposition process. The interplay of these forces produces selective deposition of particles whose size is directly controlled by the laser power. In addition, a novel trapping mechanism termed convective-optical trapping is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...