Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 7(1): 101-13, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16398504

RESUMEN

This paper reports on the thermodynamics of the interactions between surfactants (anionic, CITREM, SSL; nonionic, PGE; zwitterionic, phospholipids) and food proteins (sodium caseinate, legumin) depending on the chemical structure and molecular state (individual molecules, micelles) of the surfactants and the molecular parameters (conformation, molar mass, charge) of the proteins under changes of pH in the range from 7.2 to 5.0 and temperature from 293 to 323 K. The marked effect of the protein-surfactant interactions on the molecular parameters (the weight-average molar mass, the gyration and hydrodynamic radii) and the thermodynamic affinity of the proteins for an aqueous medium were determined by a combination of static and dynamic laser light scattering. Thermodynamically justified schematic sketches of the molecular mechanisms of the complex formation between like-charged proteins and surfactants have been proposed. In response to the complex formation between the proteins and the surfactants, the more stable and fine foams have been detected generally.


Asunto(s)
Alimentos , Proteínas/química , Tensoactivos/química , Aniones/química , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno , Micelas , Estructura Molecular , Nanoestructuras , Fosfolípidos/química , Propiedades de Superficie , Temperatura , Termodinámica
2.
J Colloid Interface Sci ; 278(1): 71-80, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15313639

RESUMEN

We report on the effect of a set of water-dispersible small-molecule surfactants (the main and the longest-hydrocarbon components of which are a citric acid ester of monostearate, a sodium salt of stearol-lactoyl lactic acid, and a polyglycerol ester of stearic acid) on molecular, thermodynamic, and functional properties of the major storage protein of broad beans (Vicia faba) legumin in different molecular states (native, heated, and acid-denatured). The interaction between legumin and the surfactants has been characterized by a combination of thermodynamic methods, namely, mixing calorimetry and multiangle laser static and dynamic light scattering. It was found that hydrogen bonds, electrostatic interactions, and hydrophobic contacts provided a basis for the interactions between the surfactants and both the native and the denatured protein in aqueous medium. Intensive association of the protein molecules in a bulk aqueous medium in the presence of the surfactants was revealed by static and dynamic laser light scattering. In consequence of this, both the surface activity and the gel-forming ability of legumin increased markedly, which has been shown by tensiometry, estimation of protein foaming capacity, and steady-state viscometry. A likely molecular mechanism underlying the effects of small-molecule surfactants on legumin structure-forming properties at the interface and in a bulk aqueous medium is discussed.


Asunto(s)
Proteínas de Plantas/química , Tensoactivos/química , Termodinámica , Vicia faba/química , Ácidos/química , Calorimetría , Glicerol/análogos & derivados , Glicerol/química , Calor , Concentración de Iones de Hidrógeno , Peso Molecular , Monoglicéridos , Tamaño de la Partícula , Desnaturalización Proteica , Estearatos/química , Propiedades de Superficie , Tensión Superficial , Temperatura , Viscosidad , Leguminas
3.
J Colloid Interface Sci ; 239(1): 87-97, 2001 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-11397052

RESUMEN

We describe the quantitative interrelation between the thermodynamic parameters of caseinate submicelles in the presence of calcium ions (0-14 mM) in aqueous medium and the capacity of the protein to induce depletion flocculation in oil-in-water emulsions at pH 7.0 and ionic strength 0.05 mol dm(-3). Measurements have been made by static and dynamic multiangle laser light scattering of the weight-average molecular weight, the radius of gyration, the hydrodynamic radius, and the second virial coefficient of caseinate submicelles in aqueous solution. Successive thermodynamic approximations with and without consideration of correlations between caseinate submicelles have been used to calculate the osmotic pressure in caseinate aqueous solutions and the free energy of the depletion interaction between droplets in oil-in-water emulsions stabilized by caseinate. Numerical results from both thermodynamic approximations are in reasonably good agreement with experiment, predicting a pronounced decrease in the strength of the depletion attraction at concentrations of Ca(2+) in the range 4-8 mM (with a minimum value at 8 mM). This correlates well with the great enhancement of stability of these emulsions with respect to flocculation in comparison with systems having no added ionic calcium and emulsions with lower (2 mM) or higher (10 mM) Ca(2+) contents. Nevertheless, the allowance for interactive correlations between caseinate submicelles seems to lead to a better prediction of emulsion flocculation on a qualitative level over the whole range of Ca(2+) concentrations studied (2-14 mM). The calculated pronounced decrease in depletion interaction strength is attributable to marked changes in weight-average molecular weight and mean size of aggregates, and to more positive values of the second virial coefficient of caseinate submicelles with increasing Ca(2+) content. Finally, we discuss the part played by the electrical charge on the protein in determining the overall strength of the flocculation-inducing attractive interactions between droplets. Copyright 2001 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...