Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 21(12): 1352-1356, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36138146

RESUMEN

Conductivities are key material parameters that govern various types of transport (electronic charge, spin, heat and so on) driven by thermodynamic forces. Magnons, the elementary excitations of the magnetic order, flow under the gradient of a magnon chemical potential1-3 in proportion to a magnon (spin) conductivity. The magnetic insulator yttrium iron garnet is the material of choice for efficient magnon spin transport. Here we report a giant magnon conductivity in thin yttrium iron garnet films with thicknesses down to 3.7 nm when the number of occupied two-dimensional subbands is reduced from a large number to a few, which corresponds to a transition from three-dimensional to two-dimensional magnon transport. We extract a two-dimensional magnon spin conductivity around 1 S at room temperature, comparable to the (electronic) conductivity of the high-mobility two-dimensional electron gas in GaAs quantum wells at millikelvin temperatures4. Such high conductivities offer opportunities to develop low-dissipation magnon-based spintronic devices.

2.
Sci Rep ; 12(1): 7246, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508481

RESUMEN

Nonlinear self-phase modulation is a universal phenomenon responsible, for example, for the formation of propagating dynamic solitons. It has been reported for waves of different physical nature. However its direct experimental observation for spin waves has been challenging. Here we show that exceptionally strong phase modulation can be achieved for spin waves in microscopic waveguides fabricated from nanometer-thick films of magnetic insulator, which support propagation of spin waves with large amplitudes corresponding to angles of magnetization precession exceeding 10°. At these amplitudes, the nonstationary nonlinear dynamic response of the spin system causes an extreme broadening of the spectrum of spin-wave pulses resulting in a strong spatial variation of the spin-wave wavelength and a temporal variation of the spin-wave phase across the pulse. Our findings demonstrate great complexity of nonlinear wave processes in microscopic magnetic structures and importance of their understanding for technical applications of spin waves in integrated devices.

3.
Opt Express ; 26(24): 31554-31566, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30650739

RESUMEN

We experimentally demonstrate a disruptive approach to control magnetooptical nonreciprocal effects. It has been known that the combination of a magneto-optically (MO) active substrate and extraordinary transmission (EOT) effects through deep-subwavelength nanoslits of a noble metal grating, leads to giant enhancements of the magnitude of the MO effects that would normally be obtained on just the bar substrate. This was demonstrated both in the transmission configuration, where the OET is directly observed, as well as in reflection configuration, where an increase of a transmitted power results in a decrease in reflected power. We show here that even more than just an enhancement, the MO effects can also undergo a sign reversal by achieving a hybridization of the different types of resonances at play in these EOT nanogratings. By tuning the geometrical profile of the grating's slits, one can engineer - for a fixed wavelength and fixed magnetization - the transverse MO Kerr effect (TMOKE) reflectivity of such a magnetoplasmonic system to be enhanced, extinguished or inversely enhanced. We have fabricated gold gratings with varying nanoslit widths on a Bi-substituted gadolinium iron garnet and experimentally confirmed such a behavior using a customized magneto-optic Mueller matrix ellipsometer. This demonstration allows new design paradigms for integrated nonreciprocal circuits and biochemical sensors with increased sensitivity and reduced footprint.

4.
Sci Rep ; 6: 32781, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27608533

RESUMEN

Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators.

5.
Nat Commun ; 7: 10377, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26815737

RESUMEN

In recent years, spin-orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin-orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin-orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current.

6.
Phys Rev Lett ; 113(2): 027601, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25062233

RESUMEN

We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modeling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.

7.
Phys Rev Lett ; 111(21): 217204, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24313523

RESUMEN

We report on the electrical detection of the dynamical part of the spin-pumping current emitted during ferromagnetic resonance using inverse spin Hall effect methods. The experiment is performed on a YIG|Pt bilayer. The choice of yttrium iron garnet (YIG), a magnetic insulator, ensures that no charge current flows between the two layers and only the pure spin current produced by the magnetization dynamics is transferred into the adjacent strong spin-orbit Pt layer via spin pumping. To avoid measuring the parasitic eddy currents induced at the frequency of the microwave source, a resonance at half the frequency is induced using parametric excitation in the parallel geometry. Triggering this nonlinear effect allows us to directly detect on a spectrum analyzer the microwave component of the inverse spin Hall effect voltage. Signals as large as 30 µV are measured for precession angles of a couple of degrees. This direct detection provides a novel efficient means to study magnetization dynamics on a very wide frequency range with great sensitivity.

8.
J Phys Condens Matter ; 22(40): 406001, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-21386581

RESUMEN

Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al(2)O(3)) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry.


Asunto(s)
Óxido de Aluminio/química , Compuestos Férricos/química , Magnetismo , Modelos Teóricos , Níquel/química , Aleaciones , Modelos Moleculares
9.
Ultrasonics ; 38(1-8): 64-6, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10829630

RESUMEN

In the present paper, we report the first results concerning a centimetre cantilever driven through non-linear effects in thin magnetostrictive films. Bimorph centimetre beams (24 mm x 5 mm) were designed using 160 microns thick glass and 0.4 micron thick multilayer TbFe/Fe films deposited via RF sputtering, using several sputtering conditions. Dynamic magneto-elastic excitations were studied experimentally on the few eigenresonance modes of the cantilevers. Sub-harmonic excitation at half or one-third of the frequency of an eigenresonance mode has been achieved near the spin reorientation transition and the efficiency is as good as for eigenfrequency excitation. Specific magnetic properties of the samples led to a model of the thermodynamic potentials and behaviour of the excited resonator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...