Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 11(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832078

RESUMEN

Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. High-resolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, the complete structure of the transmembrane domain of YnaI was not resolved. This reveals a significant limitation of SMA2000 or similar membrane-active copolymers. This limitation may come from the heterogeneity of the polymers and nonspecific interactions between the polymers and the relatively large hydrophobic pockets within the transmembrane domain of YnaI. However, this limitation offers development opportunities for detergent-free technology for challenging membrane proteins.

2.
Nat Commun ; 11(1): 4734, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948759

RESUMEN

A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations.


Asunto(s)
Agonistas de los Canales de Calcio/química , Sustancias Macromoleculares/química , Canal Liberador de Calcio Receptor de Rianodina/química , Sitios de Unión , Microscopía por Crioelectrón , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(2): 1049-1058, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896582

RESUMEN

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribosa Transferasas/genética , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Fenómenos Biofísicos , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Células Vero
4.
Nat Struct Mol Biol ; 26(12): 1123-1131, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740855

RESUMEN

Classically, G-protein-coupled receptors (GPCRs) are thought to activate G protein from the plasma membrane and are subsequently desensitized by ß-arrestin (ß-arr). However, some GPCRs continue to signal through G protein from internalized compartments, mediated by a GPCR-G protein-ß-arr 'megaplex'. Nevertheless, the molecular architecture of the megaplex remains unknown. Here, we present its cryo-electron microscopy structure, which shows simultaneous engagement of human G protein and bovine ß-arr to the core and phosphorylated tail, respectively, of a single active human chimeric ß2-adrenergic receptor with the C-terminal tail of the arginine vasopressin type 2 receptor (ß2V2R). All three components adopt their canonical active conformations, suggesting that a single megaplex GPCR is capable of simultaneously activating G protein and ß-arr. Our findings provide a structural basis for GPCR-mediated sustained internalized G protein signaling.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Animales , Bovinos , Microscopía por Crioelectrón , Endosomas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/ultraestructura , Humanos , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/ultraestructura , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/ultraestructura , beta-Arrestinas/química , beta-Arrestinas/ultraestructura
5.
Cell Metab ; 29(1): 64-77.e6, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30293774

RESUMEN

Type 2 diabetes (T2D) develops after years of prediabetes during which high glucose (glucotoxicity) impairs insulin secretion. We report that the ATP-conducting mitochondrial outer membrane voltage-dependent anion channel-1 (VDAC1) is upregulated in islets from T2D and non-diabetic organ donors under glucotoxic conditions. This is caused by a glucotoxicity-induced transcriptional program, triggered during years of prediabetes with suboptimal blood glucose control. Metformin counteracts VDAC1 induction. VDAC1 overexpression causes its mistargeting to the plasma membrane of the insulin-secreting ß cells with loss of the crucial metabolic coupling factor ATP. VDAC1 antibodies and inhibitors prevent ATP loss. Through direct inhibition of VDAC1 conductance, metformin, like specific VDAC1 inhibitors and antibodies, restores the impaired generation of ATP and glucose-stimulated insulin secretion in T2D islets. Treatment of db/db mice with VDAC1 inhibitor prevents hyperglycemia, and maintains normal glucose tolerance and physiological regulation of insulin secretion. Thus, ß cell function is preserved by targeting the novel diabetes executer protein VDAC1.


Asunto(s)
Hiperglucemia , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina , Insulina/metabolismo , Metformina/farmacología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones
6.
J Biol Chem ; 291(48): 24986-25003, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27738100

RESUMEN

Apoptosis is thought to play a critical role in several pathological processes, such as neurodegenerative diseases (i.e. Parkinson's and Alzheimer's diseases) and various cardiovascular diseases. Despite the fact that apoptotic mechanisms are well defined, there is still no substantial therapeutic strategy to stop or even slow this process. Thus, there is an unmet need for therapeutic agents that are able to block or slow apoptosis in neurodegenerative and cardiovascular diseases. The outer mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1) is a convergence point for a variety of cell survival and death signals, including apoptosis. Recently, we demonstrated that VDAC1 oligomerization is involved in mitochondrion-mediated apoptosis. Thus, VDAC1 oligomerization represents a prime target for agents designed to modulate apoptosis. Here, high-throughput compound screening and medicinal chemistry were employed to develop compounds that directly interact with VDAC1 and prevent VDAC1 oligomerization, concomitant with an inhibition of apoptosis as induced by various means and in various cell lines. The compounds protected against apoptosis-associated mitochondrial dysfunction, restoring dissipated mitochondrial membrane potential, and thus cell energy and metabolism, decreasing reactive oxidative species production, and preventing detachment of hexokinase bound to mitochondria and disruption of intracellular Ca2+ levels. Thus, this study describes novel drug candidates with a defined mechanism of action that involves inhibition of VDAC1 oligomerization, apoptosis, and mitochondrial dysfunction. The compounds VBIT-3 and VBIT-4 offer a therapeutic strategy for treating different diseases associated with enhanced apoptosis and point to VDAC1 as a promising target for therapeutic intervention.


Asunto(s)
Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Animales , Apoptosis/genética , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Ratas , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
7.
Biochim Biophys Acta ; 1863(7 Pt A): 1612-23, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27064145

RESUMEN

Mitochondria-mediated apoptosis involves pro-apoptotic protein release from the mitochondria to the cytosol, triggering apoptosis. However, the mechanisms by which apoptotic initiators cross the outer mitochondrial membrane (OMM) remain unclear. The voltage-dependent anion channel 1 (VDAC1), an OMM protein, is central to mitochondria-mediated apoptosis. In previous work, we demonstrated that apoptosis induction is associated with VDAC1 oligomerization, forming a mega-pore that mediates pro-apoptotic protein release. Here, we demonstrated that several known anion transport inhibitors, DIDS, SITS, H(2)DIDS, DNDS, and DPC, all interact with VDAC1, as revealed by micro-scale thermophoresis and decreased conductance of bilayer-reconstituted VDAC1. These compounds inhibited apoptosis stimuli-induced release of mitochondrial pro-apoptotic proteins, apoptosis and VDAC1 oligomerization, as monitored by chemical cross-linking or in living cells by BRET2. Moreover, the compounds inhibited VDAC1 oligomerization in isolated mitochondria and as induced by VDAC1 over-expression, suggesting that the inhibitory effect of the tested compounds involved VDAC1. Finally, the compounds also inhibited apoptosis-associated increases in intracellular Ca(2+), ([Ca(2+)]i), ROS production, mitochondria membrane potential dissipation and the increase in VDAC1 expression levels. The results presented here explored a new mechanism of action for DIDS and its analogs. All inhibited apoptosis via direct interaction with VDAC1 to inhibit its oligomerization and subsequent Cyto c release and apoptosis. Such results may allow the development of a VDAC1-specific inhibitor that would offer substantial insight into the function of VDAC1 in controlling metabolism, energy production, cholesterol transport and apoptosis. Finally, inhibitors of apoptosis could serve in pathological conditions where enhanced apoptosis is found, such as neurodegenerative diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Membranas Mitocondriales/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Señalización del Calcio/efectos de los fármacos , Cisplatino/farmacología , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Transfección , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
8.
J Biol Chem ; 290(52): 30670-83, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26542804

RESUMEN

The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid ß (Aß). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aß cell penetration and cell death induction. Aß directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aß interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aß resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aß cellular entry and Aß-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aß entry into the cytosol as well as Aß-induced toxicity. Finally, the mode of Aß-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aß-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aß cytotoxicity is thus a potential new therapeutic strategy for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Secuencias de Aminoácidos , Péptidos beta-Amiloides/toxicidad , Apoptosis , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Citocromos c/metabolismo , Hexoquinasa/metabolismo , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
9.
J Biol Chem ; 290(39): 23563-78, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26253170

RESUMEN

The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diterpenos/farmacología , Canal Aniónico 1 Dependiente del Voltaje/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética , Animales , Línea Celular Tumoral , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Ratas
10.
Biochim Biophys Acta ; 1848(10 Pt B): 2547-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25448878

RESUMEN

VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Células Tumorales Cultivadas , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética
11.
Biochim Biophys Acta ; 1843(10): 2270-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24704533

RESUMEN

VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca(2+) across the OMM and because Ca(2+) has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca(2+) levels ([Ca(2)(+)]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca(2+) and induce VDAC1 over-expression. Direct elevation of [Ca(2+)]i by the Ca(2+)-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca(2+)]i using the cell-permeable Ca(2+)-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca(2+)]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca(2+)-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca(2+)]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca(2+) promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Quelantes/farmacología , Citocromos c/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ionomicina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Membranas Mitocondriales/efectos de los fármacos , Multimerización de Proteína , Tapsigargina/farmacología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
12.
Cold Spring Harb Protoc ; 2014(2): 161-6, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24492769

RESUMEN

Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Transporte Biológico , Humanos
13.
Cold Spring Harb Protoc ; 2014(2): 195-8, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24492771

RESUMEN

Ca(2+) permeability mediated by voltage-dependent anion-selective channel protein 1 (VDAC1) can be tested by reconstitution of purified VDAC1 into liposomes. Here, we describe a setup for this membranal system, which has been used to study the transport activity of various transporters, including VDAC1, and allows detection of the passage of molecules across the lipid bilayer. Despite the disadvantage of needing radiolabeled molecules, this system is highly desirable when the transport properties of noncharged molecules and/or active transporters are studied.


Asunto(s)
Bioensayo/métodos , Calcio/metabolismo , Liposomas/metabolismo , Animales , Transporte Biológico , Proteolípidos/metabolismo , Ratas , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
14.
Cold Spring Harb Protoc ; 2014(2): 199-201, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24492772

RESUMEN

Studying Ca(2+) transport in mitochondria in connection with energy production, as well as cell death, is of great importance. Ca(2+) activates several key enzymes in the mitochondrial matrix to enhance ATP production. This provides an important mechanism for synchronizing energy production with the energy demands of Ca(2+)-activated processes, such as contraction, allowing important feedback effects to help shape cytosolic Ca(2+) signals. A rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the mitochondrial permeability transition pore (MPTP). Here, we present a protocol for measuring Ca(2+) transport and release in isolated mitochondria.


Asunto(s)
Bioensayo/métodos , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Transporte Biológico , Poro de Transición de la Permeabilidad Mitocondrial , Ratas
15.
Cold Spring Harb Protoc ; 2014(1): 94-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24371315

RESUMEN

To make biophysical measurements of functions such as the pore-forming activity of mitochondrial voltage-dependent anion-selective channel protein 1 (VDAC1), it is first necessary to obtain a source of purified VDAC protein. In this protocol, we present a method for obtaining rat liver mitochondria as a source of VDAC1 and then describe two methods, one using a nonionic detergent and the other an ionic detergent, for purifying VDAC1 from the isolated mitochondria. This produces a source of VDAC1 proteins that are suitable for subsequent incorporation into artificially prepared phospholipid bilayers. Furthermore, the isolated mitochondria can be used for assaying the mitochondrial permeability transition pore (MPTP).


Asunto(s)
Mitocondrias Hepáticas/enzimología , Canal Aniónico 1 Dependiente del Voltaje/aislamiento & purificación , Animales , Membrana Dobles de Lípidos/metabolismo , Membranas Mitocondriales/fisiología , Permeabilidad , Ratas , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
16.
Cold Spring Harb Protoc ; 2014(1): 100-5, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24371316

RESUMEN

The functional properties of purified voltage-dependent anion-selective channel protein 1 (VDAC1) have been examined in reconstituted systems based on artificially prepared phospholipid bilayers. The most widespread method for the characterization of the pore-forming activity of the mitochondrial VDAC1 protein requires reconstitution of the channel activity into a planar lipid bilayer (PLB) that separates two aqueous compartments. This system is able to produce a refined and large set of information on channel activity. The activity of the channel is reflected in the flow of ions (i.e., current) through a membrane that otherwise represents a barrier to ion flow. The setup thus requires the use of purified protein and a source of continuous current, as well as a sophisticated detector system able to amplify and record low, picoamper-level currents. This system is so efficient that the activity of even a single channel can be detected, allowing for study of VDAC1 at the molecular level.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Membranas Mitocondriales/enzimología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Electricidad , Iones/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/fisiología , Permeabilidad , Ratas , Canal Aniónico 1 Dependiente del Voltaje/aislamiento & purificación
17.
Biochim Biophys Acta ; 1833(7): 1745-54, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542128

RESUMEN

The voltage-dependent anion channel (VDAC), located at the outer mitochondria membrane (OMM), mediates interactions between mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca(2+), and metabolites. Substantial evidence points to VDAC1 as being a key player in apoptosis, regulating the release of apoptogenic proteins from mitochondria, such as cytochrome c, and interacting with anti-apoptotic proteins. Recently, we demonstrated that VDAC1 oligomerization is a general mechanism common to numerous apoptogens acting via different initiating cascades and proposed that a protein-conducting channel formed within a VDAC1 homo/hetero oligomer mediates cytochrome c release. However, the molecular mechanism responsible for VDAC1 oligomerization remains unclear. Several studies have shown that mitochondrial Ca(2+) is involved in apoptosis induction and that VDAC1 possesses Ca(2+)-binding sites and mediates Ca(2+) transport across the OMM. Here, the relationship between the cellular Ca(2+) level, [Ca(2+)]i, VDAC1 oligomerization and apoptosis was studied. Decreasing [Ca(2+)]i using the cell-permeable Ca(2+) chelating reagent BAPTA-AM was found to inhibit VDAC1 oligomerization and apoptosis, while increasing [Ca(2+)]i using Ca(2+) ionophore resulted in VDAC1 oligomerization and apoptosis induction in the absence of apoptotic stimuli. Moreover, induction of apoptosis elevated [Ca(2+)]i, concomitantly with VDAC1 oligomerization. AzRu-mediated inhibition of mitochondrial Ca(2+) transport decreased VDAC1 oligomerization, suggesting that mitochondrial Ca(2+) is required for VDAC1 oligomerization. In addition, increased [Ca(2+)]i levels up-regulate VDAC1 expression. These results suggest that Ca(2+) promotes VDAC1 oligomerization via activation of a yet unknown signaling pathway or by increasing VDAC1 expression, leading to apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Apoptosis , Calcio/metabolismo , Mitocondrias/patología , Multimerización de Proteína/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Immunoblotting , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tapsigargina/farmacología
18.
Biochem Biophys Res Commun ; 426(1): 158-64, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22925895

RESUMEN

Ca(2+) carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca(2+)-dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with and markedly inhibit Ca(2+)-dependent activities but not the activity of Ca(2+)-independent reactions. In contrast to many reagents that serve as probes for Ca(2+), FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca(2+)-binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca(2+)-binding proteins, thereby facilitating better understanding of the function of Ca(2+) as a key bio-regulator.


Asunto(s)
Proteínas de Unión al Calcio/antagonistas & inhibidores , Colorantes Fluorescentes/química , Animales , Calcio/metabolismo , Bovinos , Membrana Celular/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/aislamiento & purificación , Luminiscencia , Masculino , Conejos , Canales Aniónicos Dependientes del Voltaje/antagonistas & inhibidores , Canales Aniónicos Dependientes del Voltaje/metabolismo
19.
J Biol Chem ; 287(27): 23152-61, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22589539

RESUMEN

The mitochondrial protein, the voltage-dependent anion channel (VDAC), is implicated in the control of apoptosis, including via its interaction with the pro- and antiapoptotic proteins. We previously demonstrated the direct interaction of Bcl2 with VDAC, leading to reduced channel conductance. VDAC1-based peptides interacted with Bcl2 to prevent its antiapoptotic activity. Here, using a variety of approaches, we show the interaction of the antiapoptotic protein, Bcl-xL, with VDAC1 and reveal that this interaction mediates Bcl-xL protection against apoptosis. C-terminally truncated Bcl-xL(Δ21) interacts with purified VDAC1, as revealed by microscale thermophoresis and as reflected in the reduced channel conductivity of bilayer-reconstituted VDAC1. Overexpression of Bcl-xL prevented staurosporine-induced apoptosis in cells expressing native VDAC1 but not certain VDAC1 mutants. Having identified mutations in VDAC1 that interfere with the Bcl-xL interaction, certain peptides representing VDAC1 sequences, including the N-terminal domain, were designed and generated as recombinant and synthetic peptides. The VDAC1 N-terminal region and two internal sequences were found to bind specifically, and in a concentration- and time-dependent manner, to immobilized Bcl-xL(Δ21), as revealed by surface plasmon resonance. Moreover, expression of the recombinant peptides in cells overexpressing Bcl-xL prevented protection offered by the protein against staurosporine-induced apoptosis. These results point to Bcl-xL acting as antiapoptotic protein, promoting tumor cell survival via binding to VDAC1. These findings suggest that interfering with Bcl-xL binding to the mitochondria by VDAC1-based peptides may serve to induce apoptosis in cancer cells and to potentiate the efficacy of conventional chemotherapeutic agents.


Asunto(s)
Apoptosis/fisiología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteína bcl-X/metabolismo , Resistencia a Antineoplásicos/genética , Células HEK293 , Humanos , Mitocondrias/fisiología , Neoplasias/tratamiento farmacológico , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Interferente Pequeño/genética , Resonancia por Plasmón de Superficie , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Proteína bcl-X/química , Proteína bcl-X/genética
20.
Biochem J ; 444(3): 475-85, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22397371

RESUMEN

Structural studies place the VDAC1 (voltage-dependent anion channel 1) N-terminal region within the channel pore. Biochemical and functional studies, however, reveal that the N-terminal domain is cytoplasmically exposed. In the present study, the location and translocation of the VDAC1 N-terminal domain, and its role in voltage-gating and as a target for anti-apoptotic proteins, were addressed. Site-directed mutagenesis and cysteine residue substitution, together with a thiol-specific cross-linker, served to show that the VDAC1 N-terminal region exists in a dynamic equilibrium, located within the pore or exposed outside the ß-barrel. Using a single cysteine-residue-bearing VDAC1, we demonstrate that the N-terminal region lies inside the pore. However, the same region can be exposed outside the pore, where it dimerizes with the N-terminal domain of a second VDAC1 molecule. When the N-terminal region α-helix structure was perturbed, intra-molecular cross-linking was abolished and dimerization was enhanced. This mutant also displays reduced voltage-gating and reduced binding to hexokinase, but not to the anti-apoptotic proteins Bcl-2 and Bcl-xL. Replacing glycine residues in the N-terminal domain GRS (glycine-rich sequence) yielded less intra-molecular cross-linked product but more dimerization, suggesting that GRS provides the flexibility needed for N-terminal translocation from the internal pore to the channel face. N-terminal mobility may thus contribute to channel gating and interaction with anti-apoptotic proteins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Activación del Canal Iónico/fisiología , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Cisteína/química , Células HEK293 , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas/genética , Ratas , Canal Aniónico 1 Dependiente del Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...