Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Trends Ecol Evol ; 39(6): 507-509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777635

RESUMEN

Scientific meetings rarely involve the local community and have minimal educational and scientific impacts on it. Here, we report the successful engagement of high-school students in scientific conferences. To promote science education and trust in science, we call upon conference attendees and organizers to involve high-school students in their meetings.


Asunto(s)
Congresos como Asunto , Ciencia , Estudiantes , Estudiantes/psicología , Humanos , Ciencia/educación , Adolescente , Instituciones Académicas
2.
Cell Rep ; 42(12): 113457, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995187

RESUMEN

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Asunto(s)
Células Acinares , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Células Acinares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Páncreas/metabolismo , Diferenciación Celular , Apoptosis/fisiología
3.
Proc Natl Acad Sci U S A ; 120(44): e2308511120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871201

RESUMEN

The immune system is a complex network of cells with critical functions in health and disease. However, a comprehensive census of the cells comprising the immune system is lacking. Here, we estimated the abundance of the primary immune cell types throughout all tissues in the human body. We conducted a literature survey and integrated data from multiplexed imaging and methylome-based deconvolution. We also considered cellular mass to determine the distribution of immune cells in terms of both number and total mass. Our results indicate that the immune system of a reference 73 kg man consists of 1.8 × 1012 cells (95% CI 1.5-2.3 × 1012), weighing 1.2 kg (95% CI 0.8-1.9). Lymphocytes constitute 40% of the total number of immune cells and 15% of the mass and are mainly located in the lymph nodes and spleen. Neutrophils account for similar proportions of both the number and total mass of immune cells, with most neutrophils residing in the bone marrow. Macrophages, present in most tissues, account for 10% of immune cells but contribute nearly 50% of the total cellular mass due to their large size. The quantification of immune cells within the human body presented here can serve to understand the immune function better and facilitate quantitative modeling of this vital system.


Asunto(s)
Cuerpo Humano , Linfocitos , Masculino , Humanos , Ganglios Linfáticos , Bazo , Macrófagos
4.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686443

RESUMEN

The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown. In this study, a total of 21 lean and obese males (38-71 years) underwent a kidney biopsy. Biochemical analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and blood samples. Correlations between different parameters were evaluated using a comprehensive matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study investigates obesity's impact on renal eCB "tone" in humans, providing insights into the ECS's role in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among obesity, the ECS, and kidney function.


Asunto(s)
Endocannabinoides , Insuficiencia Renal Crónica , Animales , Masculino , Humanos , Riñón , Insuficiencia Renal Crónica/etiología , Obesidad/complicaciones
5.
iScience ; 26(7): 107046, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37389181

RESUMEN

Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.

6.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912552

RESUMEN

Mice are a common model organism used to study metabolic diseases such as diabetes mellitus. Glucose levels are typically measured by tail-bleeding, which requires handling the mice, causes stress, and does not provide data on freely behaving mice during the dark cycle. State-of-the-art continuous glucose measurement in mice requires inserting a probe into the aortic arch of the mouse, as well as a specialized telemetry system. This challenging and expensive method has not been adopted by most labs. Here, we present a simple protocol involving the utilization of commercially available continuous glucose monitors used by millions of patients to measure glucose continuously in mice as a part of basic research. The glucose-sensing probe is inserted into the subcutaneous space in the back of the mouse through a small incision to the skin and is held in place tightly using a couple of sutures. The device is sutured to the mouse skin to ensure it remains in place. The device can measure glucose levels for up to 2 weeks and sends the data to a nearby receiver without any need to handle the mice. Scripts for the basic data analysis of glucose levels recorded are provided. This method, from surgery to computational analysis, is cost-effective and potentially very useful in metabolic research.


Asunto(s)
Glucemia , Diabetes Mellitus , Ratones , Animales , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Glucosa , Telemetría
7.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36809274

RESUMEN

Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Ratones , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Transportador 2 de Sodio-Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Betaína , Glucosa , Sodio/metabolismo , Metionina
8.
iScience ; 26(2): 106047, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818281

RESUMEN

Interventions to reduce fat are important for human health. However, they can have opposing effects such as exercise that decreases fat but increases food intake, or coherent effects such as leptin resistance which raises both. Furthermore, some interventions show an overshoot in food intake, such as recovery from a diet, whereas others do not. To explain these properties we present a graphical framework called the operating point model, based on leptin control of feeding behavior. Steady-state fat and food intake is given by the intersection of two experimental curves - steady-state fat at a given food intake and ad libitum food intake at a given fat level. Depending on which curve an intervention shifts, it has opposing or coherent effects with or without overshoot, in excellent agreement with rodent data. The model also explains the quadratic relation between leptin and fat in humans. These concepts may guide the understanding of fat regulation disorders.

9.
Cancer Res ; 82(22): 4164-4178, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36084256

RESUMEN

Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE: Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.


Asunto(s)
Ejercicio Físico , Melanoma , Nutrientes , Proteómica , Animales , Humanos , Ratones , Glucosa/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Estudios Prospectivos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ejercicio Físico/fisiología , Nutrientes/genética , Nutrientes/metabolismo
10.
Front Neurosci ; 16: 937663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033613

RESUMEN

Obesity and hyperglycemia are risk factors for cognitive decline and for the development of Alzheimer's Disease (AD). Bariatric surgery is an effective treatment for obesity that was shown to improve cognitive decline in obese patients. Bariatric surgery was shown to exert weight loss independent effects on metabolic diseases such as type 2 diabetes. We tested whether sleeve gastrectomy (SG), a common bariatric surgery, can affect the cognitive impairment in lean, normoglycemic female 5xFAD mice, a genetic model for AD. 5xFAD mice and wild-type (WT) littermates underwent SG or sham surgery at the age of 5 months and were tested for metabolic, behavioral, and molecular phenotypes 90 days later. SG led to a reduction in blood glucose levels and total plasma cholesterol levels in 5xFAD mice without inducing weight loss. However, the surgery did not affect the outcomes of long-term spatial memory tests in these mice. Analysis of ß-Amyloid plaques corroborated the behavioral studies in showing no effect of surgery on the molecular phenotype of 5xFAD mice. In conclusion, SG leads to an improved metabolic profile in lean female 5xFAD mice without inducing weight loss but does not affect the brain pathology or behavioral phenotype. Our results suggest that the positive effects of bariatric surgery on cognitive decline in obese patients are likely attributed to weight loss and improvement in obesity sequelae, and not to weight loss independent effects of surgery.

11.
Metabolites ; 12(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35629934

RESUMEN

We report the long-term response to bariatric surgery in a singular family of four adolescents with severe obesity (41-82 kg/m2), homozygous for the C271R loss-of-function mutation in the melanocortin 4 receptor (MC4R), and three adults heterozygous for the same mutation. All patients had similar sociodemographic backgrounds and were followed for an average of 7 years. Three of the four homozygous patients regained their full weight (42-77 kg/m2), while the fourth lost weight but remained obese with a body mass index of 60 kg/m2. Weight regain was associated with relapse of most comorbidities, yet hyperglycemia did not relapse or was delayed. A1c levels were reduced in homozygous and heterozygous patients. The long-term follow-up data on this very unique genetic setting show that weight loss and amelioration of obesity following bariatric surgery require active MC4R signaling, while the improvement in glycemia is in part independent of weight loss. The study validates animal models and demonstrates the importance of biological signaling in the regulation of weight, even after bariatric surgery.

12.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35393955

RESUMEN

Mothers that underwent bariatric surgery are at higher risk for delivering a small-for-gestational age (SGA) infant. This phenomenon is attributed to malabsorption and rapid weight loss following surgery. We compared pregnancy outcomes in lean mice that underwent sham surgery or sleeve gastrectomy (SG). SG led to a reduction in glucose levels and an increase in postprandial levels of glucagon-like peptide 1 (Glp1) without affecting mice weight during pregnancy. Pups of SG-operated mice (SG pups) were born SGA. The placenta and pancreas of the pups were not affected by SG, although a high-fat diet caused hepatic steatosis and glucose intolerance in male SG pups. Treatment with a Glp1 receptor antagonist during pregnancy normalized the birth weight of SG pups and diminished the adverse response to a high-fat diet without affecting glucose levels of pregnant mice. The antagonist did not affect the birth weight of pups of sham-operated mice. Our findings link elevated Glp1 signaling, rather than weight loss, to the increased prevalence of SGA births following bariatric surgery with metabolic consequences for the offspring. The long-term effects of bariatric surgery on the metabolic health of offspring of patients require further investigation.


Asunto(s)
Gastrectomía , Péptido 1 Similar al Glucagón , Animales , Peso al Nacer , Femenino , Gastrectomía/efectos adversos , Glucosa/metabolismo , Humanos , Masculino , Ratones , Embarazo , Pérdida de Peso/fisiología
13.
Am J Physiol Endocrinol Metab ; 322(5): E414-E424, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35285295

RESUMEN

One anastomosis gastric bypass (OAGB) surgery became a common bariatric procedure in recent years. In this surgery, the distal stomach, duodenum, and proximal jejunum are bypassed, leading to weight loss, improvement in metabolic parameters, and a change in hormonal secretion. We sought to generate and characterize a mouse model for OAGB. Mice fed for 26 wk on a high-fat diet were assigned to OAGB, sham surgery, or caloric restriction and were followed for 50 more days on a high-fat diet. Physiological and histological parameters of the mice were compared during and at the end of the experiment. OAGB-operated mice lost weight and displayed low levels of plasma lipids, high insulin sensitivity, and rapid glucose metabolism compared with sham-operated mice. OAGB-operated mice had higher energy expenditure, higher levels of glucagon-like peptide (GLP-1), and lower albumin than weight-matched calorie-restricted mice. There was no difference in the histology of the endocrine pancreas. The livers of OAGB mice had little hepatic steatosis yet presented with a large number of phagocytic cells. The OAGB mouse model recapitulates many of the phenotypes described in patients that underwent OAGB and enables molecular and physiological studies on the outcome of this surgery.NEW & NOTEWORTHY A mouse model for one anastomosis gastric bypass (OAGB) surgery displays similar outcomes to clinical reports and enables to study the weight loss-dependent and -independent effects of this bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Derivación Gástrica , Resistencia a la Insulina , Obesidad Mórbida , Animales , Cirugía Bariátrica/métodos , Modelos Animales de Enfermedad , Derivación Gástrica/métodos , Humanos , Ratones , Obesidad Mórbida/metabolismo , Estudios Retrospectivos , Pérdida de Peso/fisiología
14.
Mol Metab ; 60: 101467, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35240340

RESUMEN

OBJECTIVES: Until recently, communication between neighboring cells in islets of Langerhans was overlooked by genomic technologies, which require rigorous tissue dissociation into single cells. METHODS: We utilize sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to systematically map cellular interactions in the endocrine pancreas after pancreatectomy. RESULTS: The pancreas cellular landscape features pancreatectomy associated heterogeneity of beta-cells, including an interaction-specific program between paired beta and delta-cells. CONCLUSIONS: Our analysis suggests that the particular cluster of beta-cells that pairs with delta-cells benefits from stress protection, implying that the interaction between beta- and delta-cells might safeguard against pancreatectomy associated challenges. The work encourages testing the potential relevance of physically-interacting beta-delta-cells also in diabetes mellitus.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Páncreas , Pancreatectomía , Regeneración
15.
J Clin Endocrinol Metab ; 107(4): e1434-e1443, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34850003

RESUMEN

PURPOSE: The incidences of obesity and attention-deficit/hyperactivity disorder (ADHD) have increased in parallel over recent decades. We assessed the association between obesity and ADHD in a national sample of adolescents. METHOD: In a nationwide population-based study of 1 118 315 adolescents (57% males; mean age 17 years), risks of obesity were compared between individuals with severe and mild ADHD and those without ADHD. Diagnoses of ADHD were confirmed by specialists in either neurology or psychiatry. Adolescents requiring regular and continuous treatment with stimulants with no improvement of symptoms under treatment were classified as having severe ADHD; data were available from 2004 to 2019. During 2015 to 2019, the diagnosis of ADHD was defined, and 65 118 (16.76%) of 388 543 adolescents with mild symptoms who required medications only for learning or who used stimulants irregularly were defined as having mild ADHD. RESULTS: The prevalence of severe and mild ADHD was 0.3% and 20.1%, respectively. Obesity was more prevalent among adolescents with severe ADHD than among those without ADHD (13.5% vs 7.5%). In the mild ADHD group 12.6% of males and 8.4% of females were diagnosed with obesity compared to 9.7% and 6.4%, respectively, in the non-ADHD group. The adjusted odds of severe ADHD for males and females with obesity were 1.77 (1.56-2.02) and 2.09 (1.63-2.66) times the odds for males and females with low-normal body mass index, respectively, and 1.42 (1.37-1.48) and 1.42 (1.34-1.50) for males and females with mild ADHD, respectively. The elevated risk persisted in several sensitivity analyses. CONCLUSIONS: Both adolescents with severe and mild ADHD are at increased risk for obesity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Índice de Masa Corporal , Estimulantes del Sistema Nervioso Central/uso terapéutico , Femenino , Humanos , Israel/epidemiología , Masculino , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/epidemiología
16.
Diabetes ; 70(10): 2289-2298, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341005

RESUMEN

Bariatric operations induce weight loss, which is associated with an improvement in hepatic steatosis and a reduction in hepatic glucose production. It is not clear whether these outcomes are entirely due to weight loss, or whether the new anatomy imposed by the surgery contributes to the improvement in the metabolic function of the liver. We performed vertical sleeve gastrectomy (VSG) on obese mice provided with a high-fat high-sucrose diet and compared them to diet and weight-matched sham-operated mice (WMS). At 40 days after surgery, VSG-operated mice displayed less hepatic steatosis compared with WMS. By measuring the fasting glucose and insulin levels in the blood vessels feeding and draining the liver, we showed directly that hepatic glucose production was suppressed after VSG. Insulin levels were elevated in the portal vein, and hepatic insulin clearance was elevated in VSG-operated mice. The hepatic expression of genes associated with insulin clearance was upregulated. We repeated the experiment in lean mice and observed that portal insulin and glucagon are elevated, but only insulin clearance is increased in VSG-operated mice. In conclusion, direct measurement of glucose and insulin in the blood entering and leaving the liver shows that VSG affects glucose and insulin metabolism through mechanisms independent of weight loss and diet.


Asunto(s)
Gastrectomía , Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Pérdida de Peso/fisiología , Animales , Cirugía Bariátrica , Gastrectomía/métodos , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Obesos , Obesidad/metabolismo , Obesidad/cirugía
17.
J Clin Med ; 10(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203100

RESUMEN

Patients that undergo bariatric surgery experience weight loss and a reduction in the plasma levels of the hepatic enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We used the Israeli national bariatric registry, which includes demographic, clinical, and biochemical data on 19,403 patients, of which 1335 patients had two-year follow-up data on ALT, AST, A1C, and BMI, to test the dependence of the reduction in the levels of ALT and AST on weight loss. The data were analyzed using regression models, retrospective matching, and time course analyses. Changes in liver enzymes did not correlate with change in BMI, and linear regression models did not demonstrate that the change in ALT and AST values were dependent on pre-operative levels of BMI or the extent of weight loss. ALT and AST levels were reduced two years after surgery compared with a cohort of retrospectively matched patients for ethnicity, sex, age, BMI, and A1C. Finally, patients who regained weight displayed a reduction in levels of liver enzymes. Our results suggest that bariatric surgery affects AST and ALT levels via weight loss dependent and independent mechanisms. Mechanistic studies that will identify the nature of this effect and the clinical relevance of ALT and AST levels to the post-bariatric liver function are warranted.

18.
J Clin Med ; 10(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803285

RESUMEN

Bariatric surgeries may lead to an improvement in metabolic fatty liver disease, and a reduction in the levels of the hepatic enzyme Alanine Aminotransferase (ALT). We compared the effects of Sleeve Gastrectomy (SG), Roux en Y Gastric Bypass (RYGB) and One Anastomosis Gastric Bypass (OAGB) on the levels of ALT by analysis of two-year follow-up data from 4980 patients in the Israeli Bariatric Registry that included laboratory tests and demographic information. Pre-operative characteristics of patients, and particularly levels of liver enzymes, were similar across surgery types. Regression modeling and retrospective matching showed that SG was superior to RYGB and OAGB in reducing ALT levels, and in reducing the fraction of patients with abnormally high ALT levels. Two-year post-surgery, an increase in ALT levels from normal to abnormal levels was observed in 5% of SG patients, and in 18% and 23% of RYGB and OAGB patients. In conclusion, SG leads to a greater reduction in ALT levels compared with bypass surgeries and a lower incidence of post-surgical elevation of ALT levels. Further studies are required to identify the cause for the rise in liver enzymes, and to determine whether ALT levels correlate with liver pathology especially following bariatric surgery.

19.
Science ; 372(6544): 808-814, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33858992

RESUMEN

Obesity is a global epidemic that causes morbidity and impaired quality of life. The melanocortin receptor 4 (MC4R) is at the crux of appetite, energy homeostasis, and body-weight control in the central nervous system and is a prime target for anti-obesity drugs. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human MC4R-Gs signaling complex bound to the agonist setmelanotide, a cyclic peptide recently approved for the treatment of obesity. The work reveals the mechanism of MC4R activation, highlighting a molecular switch that initiates satiation signaling. In addition, our findings indicate that calcium (Ca2+) is required for agonist, but not antagonist, efficacy. These results fill a gap in the understanding of MC4R activation and could guide the design of future weight-management drugs.


Asunto(s)
Fármacos Antiobesidad/química , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/química , Saciedad , alfa-MSH/análogos & derivados , Fármacos Antiobesidad/farmacología , Apetito , Sitios de Unión , Calcio/química , Calcio/fisiología , Microscopía por Crioelectrón , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Mutación , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Conformación Proteica en Hélice alfa , Dominios Proteicos , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal , alfa-MSH/química , alfa-MSH/farmacología
20.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33692101

RESUMEN

No disease-modifying therapy is currently available for Parkinson's disease (PD), the second most common neurodegenerative disease. The long nonmotor prodromal phase of PD is a window of opportunity for early detection and intervention. However, we lack the pathophysiological understanding to develop selective biomarkers and interventions. By using a mutant α-synuclein selective-overexpression mouse model of prodromal PD, we identified a cell-autonomous selective Kv4 channelopathy in dorsal motor nucleus of the vagus (DMV) neurons. This functional remodeling of intact DMV neurons leads to impaired pacemaker function in vitro and in vivo, which, in turn, reduces gastrointestinal motility, a common early symptom of prodromal PD. We identify a chain of events from α-synuclein via a biophysical dysfunction of a specific neuronal population to a clinically relevant prodromal symptom. These findings will facilitate the rational design of clinical biomarkers to identify people at risk for developing PD.


Asunto(s)
Canalopatías , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Ratones , Neuronas Motoras , Enfermedad de Parkinson/etiología , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...