Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(49)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37666249

RESUMEN

Martensitic transformations in shape memory alloys are often accompanied by thermal hysteresis, and engineering this property is of prime scientific interest. The martensitic transformation can be characterized as thermoelastic, where the extent of the transformation is determined by a balance between thermodynamic driving force and stored elastic energy. Here we used molecular dynamics simulations of the NiTi alloy to explore hysteresis-inducing mechanisms and thermoelastic behavior by progressively increasing microstructural constraints from single crystals to bi-crystals to polycrystals. In defect-free single crystals, the austenite-martensite interface moves unimpeded with a high velocity. In bi-crystals, grain boundaries act as significant obstacles to the transformation and produce hysteresis by requiring additional nucleation events. In polycrystals, the transformation is further limited by the thermoelastic balance. The stored elastic energy can be converted to mechanisms of non-elastic strain accommodation, which also produce hysteresis. We further demonstrated that the thermoelastic behavior can be controlled by adjusting microstructural constraints.

2.
Adv Mater ; 33(5): e2005092, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33345439

RESUMEN

Thermoelastic deformation mechanisms in polycrystalline biomedical-grade superelastic NiTi are spatially mapped using in situ neutron diffraction during multiaxial loading and heating. The trigonal R-phase is formed from the cubic phase during cooling to room temperature and subsequently deforms in compression, tension, and torsion. The resulting R-phase variant microstructure from the variant reorientation and detwinning processes are equivalent for the corresponding strain in tension and compression, and the variant microstructure is reversible by isothermal loading. The R-phase variant microstructure is consistent between uniaxial and torsional loading when the principal stress directions of the stress state are considered (for the crystallographic directions observed here). The variant microstructure evolution is tracked and the similarity in general behavior between uniaxial and torsional loading, in spite of the implicit heterogeneous stress state associated with torsional loading, pointed to the ability of the reversible thermoelastic transformation in NiTi to accommodate stress and strain mismatch with deformation. This ability of the R-phase, despite its limited variants, to accommodate stress and strain and satisfy strain incompatibility in addition to the existing internal stresses has significance for reducing irrecoverable deformation mechanisms during loading and cycling through the phase transformation.


Asunto(s)
Elasticidad , Pruebas Mecánicas , Níquel , Estrés Mecánico , Titanio , Transición de Fase , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA