Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(13): 2633-2643, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31996455

RESUMEN

An increasing number of studies supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes functional recovery in humans with spinal cord injury (SCI). However, the neural mechanisms contributing to these effects remain poorly understood. Here we examined motor-evoked potentials in arm muscles elicited by cortical and subcortical stimulation of corticospinal axons before and after 20 min of TESS (30 Hz pulses with a 5 kHz carrier frequency) and sham-TESS applied between C5 and C6 spinous processes in males and females with and without chronic incomplete cervical SCI. The amplitude of subcortical, but not cortical, motor-evoked potentials increased in proximal and distal arm muscles for 75 min after TESS, but not sham-TESS, in control subjects and SCI participants, suggesting a subcortical origin for these effects. Intracortical inhibition, elicited by paired stimuli, increased after TESS in both groups. When TESS was applied without the 5 kHz carrier frequency both subcortical and cortical motor-evoked potentials were facilitated without changing intracortical inhibition, suggesting that the 5 kHz carrier frequency contributed to the cortical inhibitory effects. Hand and arm function improved largely when TESS was used with, compared with without, the 5 kHz carrier frequency. These novel observations demonstrate that TESS influences cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. We hypothesized that these parallel effects contribute to further the recovery of limb function following SCI.SIGNIFICANCE STATEMENT Accumulating evidence supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes recovery of function in humans with spinal cord injury (SCI). Here, we show that a single session of TESS over the cervical spinal cord in individuals with incomplete chronic cervical SCI influenced in parallel the excitability cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. Importantly, these parallel physiological effects had an impact on the magnitude of improvements in voluntary motor output.


Asunto(s)
Corteza Cerebral/fisiopatología , Plasticidad Neuronal/fisiología , Cuadriplejía/terapia , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Estimulación de la Médula Espinal/métodos , Adulto , Corteza Cerebral/diagnóstico por imagen , Médula Cervical/diagnóstico por imagen , Médula Cervical/fisiopatología , Electromiografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Cuadriplejía/diagnóstico por imagen , Cuadriplejía/fisiopatología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
2.
Front Neurol ; 11: 514181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536992

RESUMEN

Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic "motor level." Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.

3.
J Neurotrauma ; 36(3): 500-516, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790404

RESUMEN

High-level quadriplegia is a devastating condition with limited treatment options. Bone marrow derived stem cells (BMSCs) are reported to have immunomodulatory and neurotrophic effects in spinal cord injury (SCI). We report a subject with complete C2 SCI who received three anatomically targeted intrathecal infusions of BMSCs under a single-patient expanded access investigational new drug (IND). She underwent intensive physical therapy and was followed for >2 years. At end-point, her American Spinal Injury Association Impairment Scale (AIS) grade improved from A to B, and she recovered focal pressure touch sensation over several body areas. We conducted serial neurophysiological testing to monitor changes in residual connectivity. Motor, sensory, and autonomic system testing included motor evoked potentials (MEPs), somatosensory evoked potentials (SSEPs), electromyography (EMG) recordings, F waves, galvanic skin responses, and tilt-table responses. The quality and magnitude of voluntary EMG activations increased over time, but remained below the threshold of clinically obvious movement. Unexpectedly, at 14 months post-injury, deep inspiratory maneuvers triggered respiratory-like EMG bursting in the biceps and several other muscles. This finding means that connections between respiratory neurons and motor neurons were newly established, or unmasked. We also report serial analysis of MRI, International Standards for Neurological Classification of SCI (ISNCSCI), pulmonary function, pain scores, cerebrospinal fluid (CSF) cytokines, and bladder assessment. As a single case, the linkage of the clinical and neurophysiological changes to either natural history or to the BMSC infusions cannot be resolved. Nevertheless, such detailed neurophysiological assessment of high cervical SCI patients is rarely performed. Our findings indicate that electrophysiology studies are sensitive to define both residual connectivity and new plasticity.


Asunto(s)
Células Madre Mesenquimatosas , Cuadriplejía/terapia , Traumatismos de la Médula Espinal/terapia , Adulto , Electromiografía , Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Humanos , Inyecciones Espinales , Cuadriplejía/etiología , Cuadriplejía/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
4.
J Neurotrauma ; 36(9): 1399-1415, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284945

RESUMEN

Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.


Asunto(s)
Locomoción/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Circulación Cerebrovascular/fisiología , Femenino , Imagen por Resonancia Magnética , Médula Espinal/irrigación sanguínea , Médula Espinal/fisiopatología , Porcinos , Porcinos Enanos , Ultrasonografía Doppler
5.
Methods Mol Biol ; 1739: 467-484, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546727

RESUMEN

Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.


Asunto(s)
Células de Schwann/citología , Traumatismos de la Médula Espinal/terapia , Animales , Humanos , Regeneración Nerviosa/fisiología , Células de Schwann/trasplante , Porcinos
6.
J Neurotrauma ; 34(18): 2595-2608, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27251314

RESUMEN

Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.


Asunto(s)
Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Traumatismos de la Médula Espinal/diagnóstico , Médula Espinal/fisiología , Animales , Femenino , Músculo Esquelético/fisiología , Plasticidad Neuronal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Porcinos , Estimulación Transcraneal de Corriente Directa
7.
eNeuro ; 2(2)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023683

RESUMEN

The histological assessment of spinal cord tissue in three dimensions has previously been very time consuming and prone to errors of interpretation. Advances in tissue clearing have significantly improved visualization of fluorescently labelled axons. While recent proof-of-concept studies have been performed with transgenic mice in which axons were prelabeled with GFP, investigating axonal regeneration requires stringent axonal tracing methods as well as the use of animal models in which transgenic axonal labeling is not available. Using rodent models of spinal cord injury, we labeled axon tracts of interest using both adeno-associated virus and chemical tracers and performed tetrahydrofuran-based tissue clearing to image multiple axon types in spinal cords using light sheet and confocal microscopy. Using this approach, we investigated the relationships between axons and scar-forming cells at the injury site as well as connections between sensory axons and motor pools in the spinal cord. In addition, we used these methods to trace axons in nonhuman primates. This reproducible and adaptable virus-based approach can be combined with transgenic mice or with chemical-based tract-tracing methods, providing scientists with flexibility in obtaining axonal trajectory information from transparent tissue.

8.
Curr Opin Organ Transplant ; 18(6): 682-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24220051

RESUMEN

PURPOSE OF REVIEW: To describe the current status of testing Schwann cell transplantation as a therapy for human spinal cord injury (SCI). RECENT FINDINGS: Transplanted Schwann cells have reparative effects in the damaged spinal cord. A few clinical studies have reported that Schwann cell transplantation appears safe. Compared with allogeneic cell transplants, autologous cells do not require immune suppression, but the workload of cell manufacturing is greater. Preclinical Schwann cell transplant studies conducted at the University of Miami in 2009-2012 supported an investigational new drug approved by the Food and Drug Administration. A Phase 1 safety study has been initiated. SUMMARY: Spinal cord repair after severe SCI requires that axonal regeneration and myelination occur in a context of reduced inhibition, enhanced plasticity, and new circuit formation. Evolving clinical experience with Schwann cell transplantation may provide a basis upon which additionally combined therapeutics can be tested to increase the extent of repair after SCI. Safety is the primary consideration when ex-vivo manipulated cells are introduced into the damaged nervous system. Preclinical studies across several species have not indicated safety concerns regarding Schwann cells. Initial clinical reports from studies in Iran and China are suggestive of clinical safety, although more rigorous characterization of the implanted cells is needed.


Asunto(s)
Células de Schwann/trasplante , Traumatismos de la Médula Espinal/terapia , Trasplante de Células , Humanos , Nervios Periféricos/trasplante , Células de Schwann/fisiología , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...