Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 186: 31-44, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979443

RESUMEN

Ischemia/reperfusion (I/R) injury after revascularization contributes ∼50% of infarct size and causes heart failure, for which no established clinical treatment exists. ß-hydroxybutyrate (ß-OHB), which serves as both an energy source and a signaling molecule, has recently been reported to be cardioprotective when administered immediately before I/R and continuously after reperfusion. This study aims to determine whether administering ß-OHB at the time of reperfusion with a single dose can alleviate I/R injury and, if so, to define the mechanisms involved. We found plasma ß-OHB levels were elevated during ischemia in STEMI patients, albeit not to myocardial protection level, and decreased after revascularization. In mice, compared with normal saline, ß-OHB administrated at reperfusion reduced infarct size (by 50%) and preserved cardiac function, as well as activated autophagy and preserved mtDNA levels in the border zone. Our treatment with one dose ß-OHB reached a level achievable with fasting and strenuous physical activity. In neonatal rat ventricular myocytes (NRVMs) subjected to I/R, ß-OHB at physiologic level reduced cell death, increased autophagy, preserved mitochondrial mass, function, and membrane potential, in addition to attenuating reactive oxygen species (ROS) levels. ATG7 knockdown/knockout abolished the protective effects of ß-OHB observed both in vitro and in vivo. Mechanistically, ß-OHB's cardioprotective effects were associated with inhibition of mTOR signaling. In conclusion, ß-OHB, when administered at reperfusion, reduces infarct size and maintains mitochondrial homeostasis by increasing autophagic flux (potentially through mTOR inhibition). Since ß-OHB has been safely tested in heart failure patients, it may be a viable therapeutic to reduce infarct size in STEMI patients.


Asunto(s)
Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Infarto del Miocardio con Elevación del ST , Ratones , Ratas , Animales , Humanos , Masculino , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/uso terapéutico , Infarto del Miocardio con Elevación del ST/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Reperfusión , Insuficiencia Cardíaca/metabolismo
2.
Sci Rep ; 13(1): 21638, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062139

RESUMEN

Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.


Asunto(s)
Factores de Transcripción ARNTL , Miocitos Cardíacos , Ratones , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Ratones Noqueados , Ayuno , Dinámicas Mitocondriales/fisiología
3.
Acta Pharm Sin B ; 13(10): 4172-4184, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799377

RESUMEN

The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aß42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.

4.
J Am Heart Assoc ; 12(19): e029898, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37750556

RESUMEN

Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked ß-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.


Asunto(s)
Enfermedades Cardiovasculares , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Acetilglucosamina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Glicosilación , Cardiomegalia/genética , Cardiomegalia/metabolismo , Procesamiento Proteico-Postraduccional , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
5.
Physiol Rep ; 11(9): e15686, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144628

RESUMEN

Autophagy is important for protein and organelle quality control. Growing evidence demonstrates that autophagy is tightly controlled by transcriptional mechanisms, including repression by zinc finger containing KRAB and SCAN domains 3 (ZKSCAN3). We hypothesize that cardiomyocyte-specific ZKSCAN3 knockout (Z3K) disrupts autophagy activation and repression balance and exacerbates cardiac pressure-overload-induced remodeling following transverse aortic constriction (TAC). Indeed, Z3K mice had an enhanced mortality compared to control (Con) mice following TAC. Z3K-TAC mice that survived exhibited a lower body weight compared to Z3K-Sham. Although both Con and Z3K mice exhibited cardiac hypertrophy after TAC, Z3K mice exhibited TAC-induced increase of left ventricular posterior wall thickness at end diastole (LVPWd). Conversely, Con-TAC mice exhibited decreases in PWT%, fractional shortening (FS%), and ejection fraction (EF%). Autophagy genes (Tfeb, Lc3b, and Ctsd) were decreased by the loss of ZKSCAN3. TAC suppressed Zkscan3, Tfeb, Lc3b, and Ctsd in Con mice, but not in Z3K. The Myh6/Myh7 ratio, which is related to cardiac remodeling, was decreased by the loss of ZKSCAN3. Although Ppargc1a mRNA and citrate synthase activities were decreased by TAC in both genotypes, mitochondrial electron transport chain activity did not change. Bi-variant analyses show that while in Con-Sham, the levels of autophagy and cardiac remodeling mRNAs form a strong correlation network, such was disrupted in Con-TAC, Z3K-Sham, and Z3K-TAC. Ppargc1a also forms different links in Con-sham, Con-TAC, Z3K-Sham, and Z3K-TAC. We conclude that ZKSCAN3 in cardiomyocytes reprograms autophagy and cardiac remodeling gene transcription, and their relationships with mitochondrial activities in response to TAC-induced pressure overload.


Asunto(s)
Estenosis de la Válvula Aórtica , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Cardiomegalia/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas , Ratones Noqueados , Ratones Endogámicos C57BL , Factores de Transcripción/genética
6.
Cancer Immunol Res ; 11(5): 687-702, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37058110

RESUMEN

The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Proteínas Hedgehog/metabolismo , Células Th17 , Transducción de Señal , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral
7.
Am J Physiol Heart Circ Physiol ; 324(4): H484-H493, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800507

RESUMEN

Mitochondrial DNA (mtDNA) haplotype regulates mitochondrial structure/function and reactive oxygen species in aortocaval fistula (ACF) in mice. Here, we unravel the mitochondrial haplotype effects on cardiomyocyte mitochondrial ultrastructure and transcriptome response to ACF in vivo. Phenotypic responses and quantitative transmission electron microscopy (TEM) and RNA sequence at 3 days were determined after sham surgery or ACF in vivo in cardiomyocytes from wild-type (WT) C57BL/6J (C57n:C57mt) and C3H/HeN (C3Hn:C3Hmt) and mitochondrial nuclear exchange mice (C57n:C3Hmt or C3Hn:C57mt). Quantitative TEM of cardiomyocyte mitochondria C3HWT hearts have more electron-dense compact mitochondrial cristae compared with C57WT. In response to ACF, mitochondrial area and cristae integrity are normal in C3HWT; however, there is mitochondrial swelling, cristae lysis, and disorganization in both C57WT and MNX hearts. Tissue analysis shows that C3HWT hearts have increased autophagy, antioxidant, and glucose fatty acid oxidation-related genes compared with C57WT. Comparative transcriptomic analysis of cardiomyocytes from ACF was dependent upon mtDNA haplotype. C57mtDNA haplotype was associated with increased inflammatory/protein synthesis pathways and downregulation of bioenergetic pathways, whereas C3HmtDNA showed upregulation of autophagy genes. In conclusion, ACF in vivo shows a protective response of C3Hmt haplotype that is in large part driven by mitochondrial nuclear genome interaction.NEW & NOTEWORTHY The results of this study support the effects of mtDNA haplotype on nuclear gene expression in cardiomyocytes. Currently, there is no acceptable therapy for volume overload due to mitral regurgitation. The findings of this study could suggest that mtDNA haplotype activates different pathways after ACF warrants further investigations on human population of heart disease from different ancestry backgrounds.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratones , Animales , Humanos , Miocitos Cardíacos/metabolismo , Haplotipos , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , ADN Mitocondrial/genética
8.
Nitric Oxide ; 130: 22-35, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414197

RESUMEN

Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.


Asunto(s)
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico/farmacología , Glutamina/farmacología , Glutamina/metabolismo , Ácidos Cetoglutáricos , Hipoxia/metabolismo , Metabolismo Energético/fisiología
9.
J Immunol ; 209(5): 896-906, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914835

RESUMEN

Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2ß). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.


Asunto(s)
Quinasa de la Caseína II , FN-kappa B , Linfocitos T CD8-positivos/metabolismo , Quinasa de la Caseína II/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptores de Antígenos de Linfocitos T , Serina , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR
10.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955444

RESUMEN

Given the abundance of heme proteins (cytochromes) in the mitochondrion, it is evident that a meticulously orchestrated iron metabolism is essential for cardiac health. Here, we examined the functional significance of myocardial ferritin heavy chain (FtH) in a model of acute myocardial infarction. We report that FtH deletion did not alter either the mitochondrial regulatory and surveillance pathways (fission and fusion) or mitochondrial bioenergetics in response to injury. Furthermore, deletion of myocardial FtH did not affect cardiac function, assessed by measurement of left ventricular ejection fraction, on days 1, 7, and 21 post injury. To identify the modulated pathways providing cardiomyocyte protection coincident with FtH deletion, we performed unbiased transcriptomic analysis. We found that following injury, FtH deletion was associated with upregulation of several genes with anti-ferroptotic properties, including heme oxygenase-1 (HO-1) and the cystine/glutamate anti-porter (Slc7a11). These results suggested that HO-1 overexpression mitigates ferroptosis via upregulation of Slc7a11. Indeed, using transgenic mice with HO-1 overexpression, we demonstrate that overexpressed HO-1 is coupled with increased Slc7a11 expression. In conclusion, we demonstrate that following injury, myocardial FtH deletion leads to a compensatory upregulation in a number of anti-ferroptotic genes, including HO-1. Such HO-1 induction leads to overexpression of Slc7a11 and protects the heart against ischemia-reperfusion-mediated ferroptosis, preserves mitochondrial function, and overall function of the myocardium.


Asunto(s)
Apoferritinas , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Apoferritinas/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/genética , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
11.
Cells ; 11(13)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35805195

RESUMEN

Reperfusion injury after extended ischemia accounts for approximately 50% of myocardial infarct size, and there is no standard therapy. HDAC inhibition reduces infarct size and enhances cardiomyocyte autophagy and PGC1α-mediated mitochondrial biogenesis when administered at the time of reperfusion. Furthermore, a specific autophagy-inducing peptide, Tat-Beclin 1 (TB), reduces infarct size when administered at the time of reperfusion. However, since SAHA affects multiple pathways in addition to inducing autophagy, whether autophagic flux induced by TB maintains mitochondrial homeostasis during ischemia/reperfusion (I/R) injury is unknown. We tested whether the augmentation of autophagic flux by TB has cardioprotection by preserving mitochondrial homeostasis both in vitro and in vivo. Wild-type mice were randomized into two groups: Tat-Scrambled (TS) peptide as the control and TB as the experimental group. Mice were subjected to I/R surgery (45 min coronary ligation, 24 h reperfusion). Autophagic flux, mitochondrial DNA (mtDNA), mitochondrial morphology, and mitochondrial dynamic genes were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were treated with a simulated I/R injury to verify cardiomyocyte specificity. The essential autophagy gene, ATG7, conditional cardiomyocyte-specific knockout (ATG7 cKO) mice, and isolated adult mouse ventricular myocytes (AMVMs) were used to evaluate the dependency of autophagy in adult cardiomyocytes. In NRVMs subjected to I/R, TB increased autophagic flux, mtDNA content, mitochondrial function, reduced reactive oxygen species (ROS), and mtDNA damage. Similarly, in the infarct border zone of the mouse heart, TB induced autophagy, increased mitochondrial size and mtDNA content, and promoted the expression of PGC1α and mitochondrial dynamic genes. Conversely, loss of ATG7 in AMVMs and in the myocardium of ATG7 cKO mice abolished the beneficial effects of TB on mitochondrial homeostasis. Thus, autophagic flux is a sufficient and essential process to mitigate myocardial reperfusion injury by maintaining mitochondrial homeostasis and partly by inducing PGC1α-mediated mitochondrial biogenesis.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Autofagia , Beclina-1/metabolismo , ADN Mitocondrial , Homeostasis , Ratones , Mitocondrias/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Front Aging ; 3: 812810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821809

RESUMEN

Mitochondrial dysfunction and metabolic decline are prevalent features of aging and age-related disorders, including neurodegeneration. Neurodegenerative diseases are associated with a progressive loss of metabolic homeostasis. This pathogenic decline in metabolism is the result of several factors, including decreased mitochondrial function, increased oxidative stress, inhibited autophagic flux, and altered metabolic substrate availability. One critical metabolite for maintaining neuronal function is glucose, which is utilized by the brain more than any other organ to meet its substantial metabolic demand. Enzymatic conversion of glucose into its downstream metabolites is critical for maintaining neuronal cell growth and overall metabolic homeostasis. Perturbation of glycolysis could significantly hinder neuronal metabolism by affecting key metabolic pathways. Here, we demonstrate that the glucose analogue 2-deoxyglucose (2DG) decreases cell viability, as well as both basal and maximal mitochondrial oxygen consumption in response to the neurotoxic lipid 4-hydroxynonenal (HNE), whereas glucose deprivation has a minimal effect. Furthermore, using a cell permeabilization assay we found that 2DG has a more pronounced effect on HNE-dependent inhibition of mitochondrial complex I and II than glucose deprivation. Importantly, these findings indicate that altered glucose utilization plays a critical role in dictating neuronal survival by regulating the mitochondrial response to electrophilic stress.

13.
Mol Brain ; 15(1): 22, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248135

RESUMEN

The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Animales , Autofagia , Metabolismo Energético , Femenino , Masculino , Ratones , Procesamiento Proteico-Postraduccional
14.
Nat Commun ; 13(1): 139, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013270

RESUMEN

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial ß-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin ß-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by ß-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial ß-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Metabolismo de los Lípidos/genética , Mitocondrias/efectos de los fármacos , Oxilipinas/metabolismo , Peritonitis/genética , Sepsis/genética , Acil-CoA Deshidrogenasa de Cadena Larga/sangre , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Carnitina O-Palmitoiltransferasa/sangre , Carnitina O-Palmitoiltransferasa/genética , Coenzima A Ligasas/sangre , Coenzima A Ligasas/genética , Femenino , Regulación de la Expresión Génica , Humanos , Recién Nacido , Interferón gamma/farmacología , Lipidómica/métodos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Subunidad beta de la Proteína Trifuncional Mitocondrial/sangre , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , Oxidación-Reducción , Peritonitis/sangre , Peritonitis/inducido químicamente , Peritonitis/patología , Células RAW 264.7 , Sepsis/sangre , Sepsis/patología
15.
Redox Biol ; 50: 102241, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066289

RESUMEN

Mitochondrial function is required to meet the energetic and metabolic requirements of the brain. Abnormalities in mitochondrial function, due to genetic or developmental factors, mitochondrial toxins, aging or insufficient mitochondrial quality control contribute to neurological and psychiatric diseases. Studying bioenergetics from postmortem human tissues has been challenging due to the diverse range of human genetics, health conditions, sex, age, and postmortem interval. Furthermore, fresh tissues that were in the past required for assessment of mitochondrial respiratory function were rarely available. Recent studies established protocols to use in bioenergetic analyses from frozen tissues using animal models and cell cultures. In this study we optimized these methods to determine the activities of mitochondrial electron transport in postmortem human brain. Further we demonstrate how these samples can be used to assess the susceptibility to the mitochondrial toxin rotenone and exposure to the reactive lipid species 4-hydroxynonenal. The establishment of such an approach will significantly impact translational studies of human diseases by allowing measurement of mitochondrial function in human tissue repositories.


Asunto(s)
Aldehídos , Complejo I de Transporte de Electrón , Mitocondrias/metabolismo , Fosforilación Oxidativa , Rotenona , Aldehídos/farmacología , Animales , Encéfalo/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Rotenona/farmacología
16.
Biomedica ; 41(4): 631-642, 2021 12 15.
Artículo en Inglés, Español | MEDLINE | ID: mdl-34936249

RESUMEN

We report two snakebites by Micrurus ortoni in Colombia and one by M. hemprichii in Perú. In two of the cases, we observed mild to moderate motor neurological involvement and in all patients, there was a marked sensory effect with hyperesthesia and hyperalgesia radiating from the bite site to the entire ipsilateral hemibody. The only patient who received antivenom, which did not correspond with the type of envenomation, developed equine serum sickness eight days after its administration. The results of the laboratory tests, including an electromyographic study, the photographic record of the clinical manifestations, and the causative agents are presented and discussed.


Se reportan dos casos de mordedura por serpientes de la especie Micrurus ortoni en Colombia y uno por M. hemprichii en Perú. En dos de los casos se observó afección neurológica motora leve a moderada y, en todos, se presentó un acentuado trastorno sensitivo con hiperestesia e hiperalgesia irradiada desde el sitio de la mordedura hacia todo el hemicuerpo comprometido. El único paciente que recibió antiveneno, el cual no era específico para el tipo de envenenamiento, desarrolló una reacción al suero equino a los ocho días de su aplicación. Se presentan y discuten los resultados de las pruebas de laboratorio, incluido el estudio electromiográfico, así como el registro fotográfico de las manifestaciones clínicas y de los agentes causales.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Animales , Colombia , Venenos Elapídicos , Elapidae , Caballos , Humanos , Perú , Mordeduras de Serpientes/tratamiento farmacológico
17.
Biomédica (Bogotá) ; 41(4): 631-642, oct.-dic. 2021. tab, graf
Artículo en Español | LILACS | ID: biblio-1355738

RESUMEN

Resumen | Se reportan dos casos de mordedura por serpientes de la especie Micrurus ortoni en Colombia y uno por M. hemprichii en Perú. En dos de los casos se observó afección neurológica motora leve a moderada y, en todos, se presentó un acentuado trastorno sensitivo con hiperestesia e hiperalgesia irradiada desde el sitio de la mordedura hacia todo el hemicuerpo comprometido. El único paciente que recibió antiveneno, el cual no era específico para el tipo de envenenamiento, desarrolló una reacción al suero equino a los ocho días de su aplicación. Se presentan y discuten los resultados de las pruebas de laboratorio, incluido el estudio electromiográfico, así como el registro fotográfico de las manifestaciones clínicas y de los agentes causales.


Abstract | We report two snakebites by Micrurus ortoni in Colombia and one by M. hemprichii in Perú. In two of the cases, we observed mild to moderate motor neurological involvement and in all patients, there was a marked sensory effect with hyperesthesia and hyperalgesia radiating from the bite site to the entire ipsilateral hemibody. The only patient who received antivenom, which did not correspond with the type of envenomation, developed equine serum sickness eight days after its administration. The results of the laboratory tests, including an electromyographic study, the photographic record of the clinical manifestations, and the causative agents are presented and discussed.


Asunto(s)
Mordeduras de Serpientes , Serpientes de Coral , Perú , Colombia
18.
Commun Biol ; 4(1): 1200, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671066

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressively enlarging cysts. Here we elucidate the interplay between oxidative stress, mitochondrial dysfunction, and metabolic derangement using two mouse models of PKD1 mutation, PKD1RC/null and PKD1RC/RC. Mouse kidneys with PKD1 mutation have decreased mitochondrial complexes activity. Targeted proteomics analysis shows a significant decrease in proteins involved in the TCA cycle, fatty acid oxidation (FAO), respiratory complexes, and endogenous antioxidants. Overexpressing mitochondrial-targeted catalase (mCAT) using adeno-associated virus reduces mitochondrial ROS, oxidative damage, ameliorates the progression of PKD and partially restores expression of proteins involved in FAO and the TCA cycle. In human ADPKD cells, inducing mitochondrial ROS increased ERK1/2 phosphorylation and decreased AMPK phosphorylation, whereas the converse was observed with increased scavenging of ROS in the mitochondria. Treatment with the mitochondrial protective peptide, SS31, recapitulates the beneficial effects of mCAT, supporting its potential application as a novel therapeutic for ADPKD.


Asunto(s)
Antioxidantes/metabolismo , Mitocondrias/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Riñón Poliquístico Autosómico Dominante/fisiopatología
19.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528872

RESUMEN

Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or 'alveolospheres' with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.


Many tissues in the body are capable of regenerating by replacing defective or worn-out cells with new ones. This process relies heavily on stem cells, which are precursor cells that lack a set role in the body and can develop into different types of cells under the right conditions. Tissues often have their own pool of stem cells that they use to replenish damaged cells. But as we age, this regeneration process becomes less effective. Many of our organs, such as the lungs, are lined with epithelial cells. These cells form a protective barrier, controlling what substances get in and out of the tissue. Alveoli are parts of the lungs that allow oxygen and carbon dioxide to move between the blood and the air in the lungs. And alveoli rely on an effective epithelial cell lining to work properly. To replenish these epithelial cells, alveoli have pockets, in which a type of epithelial cell, known as AEC2, lives. These cells can serve as stem cells, developing into a different type of cell under the right conditions. To work properly, AEC2 cells require close interactions with another type of cell called L-MSC, which supports the maintenance of other cells and also has the ability to differentiate into several other cell types. Both cell types can be found close together in these stem cell pockets. So far, it has been unclear how aging affects how these cells work together to replenish the epithelial lining of the alveoli. To investigate, Chanda et al. probed AEC2s and L-MSCs in the alveoli of young and old mice. The researchers collected both cell types from young (2-3 months) and aged (22-24 months) mice. Various combinations of these cells were grown to form 3D structures, mimicking how the cells grow in the lungs. Young L-MSCs formed normal 3D structures with both young and aged AEC2 cells. But aged L-MSCs developed abnormal, loose structures with AEC2 cells (both young and old cells). Aged L-MSCs were found to have higher levels of an enzyme (called Nox4) that produces oxidants and other 'pro-aging' factors, compared to young L-MSCs. However, reducing Nox4 levels in aged L-MSCs allowed these cells to form normal 3D structures with young AEC2 cells, but not aged AEC2 cells. These findings highlight the varying effects specific stem cells have, and how their behaviour is affected by pro-aging factors. Moreover, the pro-aging enzyme Nox4 shows potential as a therapeutic target ­ downregulating its activity may reverse critical effects of aging in cells.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular/fisiología , Células Madre Mesenquimatosas , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Organoides/citología , Organoides/metabolismo , Estrés Oxidativo
20.
Cancer Res ; 81(21): 5425-5437, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289986

RESUMEN

Elevated infiltration of immunosuppressive alternatively polarized (M2) macrophages is associated with poor prognosis in patients with cancer. The tumor microenvironment remarkably orchestrates molecular mechanisms that program these macrophages. Here we identify a novel role for oncogenic Hedgehog (Hh) signaling in programming signature metabolic circuitries that regulate alternative polarization of tumor-associated macrophages. Two immunocompetent orthotopic mouse models of mammary tumors were used to test the effect of inhibiting Hh signaling on tumor-associated macrophages. Treatment with the pharmacologic Hh inhibitor vismodegib induced a significant shift in the profile of tumor-infiltrating macrophages. Mass spectrometry-based metabolomic analysis showed Hh inhibition induced significant alterations in metabolic processes, including metabolic sensing, mitochondrial adaptations, and lipid metabolism. In particular, inhibition of Hh in M2 macrophages reduced flux through the UDP-GlcNAc biosynthesis pathway. Consequently, O-GlcNAc-modification of STAT6 decreased, mitigating the immune-suppressive program of M2 macrophages, and the metabolically demanding M2 macrophages shifted their metabolism and bioenergetics from fatty acid oxidation to glycolysis. M2 macrophages enriched from vismodegib-treated mammary tumors showed characteristically decreased O-GlcNAcylation and altered mitochondrial dynamics. These Hh-inhibited macrophages are reminiscent of inflammatory (M1) macrophages, phenotypically characterized by fragmented mitochondria. This is the first report highlighting the relevance of Hh signaling in controlling a complex metabolic network in immune cells. These data describe a novel immunometabolic function of Hh signaling that can be clinically exploited. SIGNIFICANCE: These findings illustrate that Hh activity regulates a metabolic and bioenergetic regulatory program in tumor-associated macrophages that promotes their immune-suppressive polarization.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteínas Hedgehog/metabolismo , Metaboloma , Mitocondrias/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Proliferación Celular , Metabolismo Energético , Femenino , Glucólisis , Proteínas Hedgehog/genética , Humanos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , RNA-Seq , Transcriptoma , Células Tumorales Cultivadas , Macrófagos Asociados a Tumores/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...