Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photobiomodul Photomed Laser Surg ; 37(1): 45-52, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31050943

RESUMEN

Objective: The aim of our study was to quantify the effect of doses delivered by a He:Ne laser on individual macrophage kinetics, tissue oxidative stress, and wound closure using real-time in vivo imaging. Background: Photobiomodulation has been reported to reduce tissue inflammation and accelerate wound closure; however, precise parameters of laser settings to optimize macrophage behavior have not been established. We hypothesized that quantitative and real-time in vivo imaging could identify optimal fluence for macrophage migration, reduction of reactive oxygen species, and acceleration of wound closure. Methods: Larval zebrafish Tg(mpeg-dendra2) were loaded with dihydroethidium for oxidative stress detection. Fish were caudal fin injured, treated with 635 nm continuous 5 mW He:Ne laser irradiation at 3, 9, or 18 J/cm2 and time-lapsed imaged within the first 120 min postinjury. Images taken 1 and 24-h postinjury were compared for percentage wound closure. Results: A fluence of 3 J/cm2 demonstrated significant increases in macrophage migration speed, fewer stops along the way, and greatest directed migration toward the wound. These findings were associated with a significant reduction in wound content reactive oxygen species when compared with control wounded fins. Both 3 and 9 J/cm2 significantly accelerated wound closure when compared with nonirradiated control fish. Conclusions: Wound macrophage activity could be manipulated by applied fluence, leading to reduced levels of wound reactive oxygen species and accelerated wound closure. The zebrafish model provides a means to quantitatively compare wound macrophage behavior in response to a variety of laser treatment parameters in real time.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Macrófagos/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Cicatrización de Heridas/efectos de la radiación , Animales , Movimiento Celular/efectos de la radiación , Cinética , Microscopía Fluorescente , Pez Cebra
2.
J Biol Methods ; 5(4): e101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31453251

RESUMEN

Macrophage behavior is of great interest in response to tissue injury and promotion of regeneration. With increasing numbers of zebrafish reporter-based assays, new capabilities now exist to characterize macrophage migration, and their responses to biochemical cues, such as reactive oxygen species. Real time detection of macrophage behavior in response to oxidative stress using quantitative measures is currently beyond the scope of commercially available software solutions, presenting a gap in understanding macrophage behavior. To address this gap, we developed an image analysis pipeline solution to provide real time quantitative measures of cellular kinetics and reactive oxygen species content in vivo after tissue injury. This approach, termed Zirmi, differs from current software solutions that may only provide qualitative, single image analysis, or cell tracking solutions. Zirmi is equipped with user-defined algorithm parameters to customize quantitative data measures with visualization checks for an analysis pipeline of time-based changes. Moreover, this pipeline leverages open-source PhagoSight, as an automated keyhole cell tracking solution, to avoid parallel developments and build upon readily available tools. This approach demonstrated standardized space- and time-based quantitative measures of (1) fluorescent probe based oxidative stress and (2) macrophage recruitment kinetic based changes after tissue injury. Zirmi image analysis pipeline performed at execution speeds up to 10-times faster than manual image-based approaches. Automated segmentation methods were comparable to manual methods with a DICE Similarity coefficient > 0.70. Zirmi provides an open-source, quantitative, and non-generic image analysis pipeline. This strategy complements current wide-spread zebrafish strategies, for automated standardizations of analysis and data measures.

3.
Int J Cancer ; 127(1): 67-76, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19894220

RESUMEN

Osteosarcomas are primary bone tumors of osteoblastic origin that mostly affect adolescent patients. These tumors are highly aggressive and metastatic. Previous reports indicate that gain of function of a key osteoblastic differentiation factor, Runx2, leads to growth inhibition in osteosarcoma. We have previously established that Runx2 transcriptionally regulates expression of a major proapoptotic factor, Bax. Runx2 is regulated via proteasomal degradation, and proteasome inhibition has a stimulatory effect on Runx2. In this study, we hypothesized that proteasome inhibition will induce Runx2 and Runx2-dependent Bax expression sensitizing osteosarcoma cells to apoptosis. Our data showed that a proteasome inhibitor, bortezomib, increased Runx2 and Bax in osteosarcoma cells. In vitro, bortezomib suppressed growth and induced apoptosis in osteosarcoma cells but not in nonmalignant osteoblasts. Experiments involving intratibial tumor xenografts in nude mice demonstrated significant tumor regression in bortezomib-treated animals. Immunohistochemical studies revealed that bortezomib inhibited cell proliferation and induced apoptosis in osteosarcoma xenografts. These effects correlated with increased immunoreactivity for Runx2 and Bax. In summary, our results indicate that bortezomib suppresses growth and induces apoptosis in osteosarcoma in vitro and in vivo suggesting that proteasome inhibition may be effective as an adjuvant to current treatment regimens for these tumors. Published 2009 UICC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácidos Borónicos/farmacología , Osteosarcoma/patología , Inhibidores de Proteasoma , Pirazinas/farmacología , Animales , Secuencia de Bases , Bortezomib , Línea Celular Tumoral , Cartilla de ADN , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA