Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mach Learn ; 112(5): 1411-1432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37162796

RESUMEN

Gaussian processes (GPs) are an important tool in machine learning and statistics. However, off-the-shelf GP inference procedures are limited to datasets with several thousand data points because of their cubic computational complexity. For this reason, many sparse GPs techniques have been developed over the past years. In this paper, we focus on GP regression tasks and propose a new approach based on aggregating predictions from several local and correlated experts. Thereby, the degree of correlation between the experts can vary between independent up to fully correlated experts. The individual predictions of the experts are aggregated taking into account their correlation resulting in consistent uncertainty estimates. Our method recovers independent Product of Experts, sparse GP and full GP in the limiting cases. The presented framework can deal with a general kernel function and multiple variables, and has a time and space complexity which is linear in the number of experts and data samples, which makes our approach highly scalable. We demonstrate superior performance, in a time vs. accuracy sense, of our proposed method against state-of-the-art GP approximations for synthetic as well as several real-world datasets with deterministic and stochastic optimization. Supplementary Information: The online version contains supplementary material available at 10.1007/s10994-022-06297-3.

2.
JMIR AI ; 2: e48628, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-38875535

RESUMEN

BACKGROUND: Infusion failure may have severe consequences for patients receiving critical, short-half-life infusions. Continued interruptions to infusions can lead to subtherapeutic therapy. OBJECTIVE: This study aims to identify and rank determinants of the longevity of continuous infusions administered through syringe drivers, using nonlinear predictive models. Additionally, this study aims to evaluate key factors influencing infusion longevity and develop and test a model for predicting the likelihood of achieving successful infusion longevity. METHODS: Data were extracted from the event logs of smart pumps containing information on care profiles, medication types and concentrations, occlusion alarm settings, and the final infusion cessation cause. These data were then used to fit 5 nonlinear models and evaluate the best explanatory model. RESULTS: Random forest was the best-fit predictor, with an F1-score of 80.42, compared to 5 other models (mean F1-score 75.06; range 67.48-79.63). When applied to infusion data in an individual syringe driver data set, the predictor model found that the final medication concentration and medication type were of less significance to infusion longevity compared to the rate and care unit. For low-rate infusions, rates ranging from 2 to 2.8 mL/hr performed best for achieving a balance between infusion longevity and fluid load per infusion, with an occlusion versus no-occlusion ratio of 0.553. Rates between 0.8 and 1.2 mL/hr exhibited the poorest performance with a ratio of 1.604. Higher rates, up to 4 mL/hr, performed better in terms of occlusion versus no-occlusion ratios. CONCLUSIONS: This study provides clinicians with insights into the specific types of infusion that warrant more intense observation or proactive management of intravenous access; additionally, it can offer valuable information regarding the average duration of uninterrupted infusions that can be expected in these care areas. Optimizing rate settings to improve infusion longevity for continuous infusions, achieved through compounding to create customized concentrations for individual patients, may be possible in light of the study's outcomes. The study also highlights the potential of machine learning nonlinear models in predicting outcomes and life spans of specific therapies delivered via medical devices.

3.
Int J Exerc Sci ; 15(4): 747-759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992499

RESUMEN

The purpose of the current investigation was to derive an equation that could predict Functional Threshold Power (FTP) from Graded Exercise Test (GxT) data. The FTP test has been demonstrated to represent the highest cycling power output that can be maintained in a quasi-steady state for 60-min. Previous investigations to determine a comparable marker derived from a Graded Exercise test have had limited success to date. Consequently, the current study aimed to predict FTP from GxT data to provide an additional index of cycling performance. FTP has been reported to provide an insight not provided by a GxT and, in addition, does not require a formal exercise testing facility. The study design facilitated a deliberate and transparent sequence of statistical decisions, resolved in part from the perspective of exercise physiology. Seventy triathletes (male n=50, female n=20) completed cycling GxT and FTP tests in sequential order. Collected data (power output, blood lactate indices, VO2peak, body mass) were analysed using stepwise regression to identify the key parameters for predicting FTP, and confirmed using a Leave One Out (LOO) cross-validation. As a consequence of wittingly including some likely transiently highly correlated parameters on the basis of a physiological argument, the model's function is limited to predicting FTP. This investigation concluded the model (FTP = -6.62 + 0.32 FBLC-4 + 0.42 BM + 0.46 Pmax) was the prediction model of choice.

4.
Biom J ; 57(6): 1002-19, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26296502

RESUMEN

We present a robust Dirichlet process for estimating survival functions from samples with right-censored data. It adopts a prior near-ignorance approach to avoid almost any assumption about the distribution of the population lifetimes, as well as the need of eliciting an infinite dimensional parameter (in case of lack of prior information), as it happens with the usual Dirichlet process prior. We show how such model can be used to derive robust inferences from right-censored lifetime data. Robustness is due to the identification of the decisions that are prior-dependent, and can be interpreted as an analysis of sensitivity with respect to the hypothetical inclusion of fictitious new samples in the data. In particular, we derive a nonparametric estimator of the survival probability and a hypothesis test about the probability that the lifetime of an individual from one population is shorter than the lifetime of an individual from another. We evaluate these ideas on simulated data and on the Australian AIDS survival dataset. The methods are publicly available through an easy-to-use R package.


Asunto(s)
Biometría/métodos , Síndrome de Inmunodeficiencia Adquirida/epidemiología , Femenino , Humanos , Masculino , Modelos Estadísticos , Probabilidad , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA