Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(47): 16785-16796, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37970757

RESUMEN

Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.

2.
Nanoscale ; 15(15): 7115-7125, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37000615

RESUMEN

Metal-organic frameworks are a class of porous materials that show promising properties in the field of microelectronics. To reach industrial use of these materials, gas phase techniques are often preferred and were recently introduced. However, the thicknesses achieved are not sufficient, limiting further development. In this work, an improved gas phase process allowing ZIF-8 layer formation of several hundreds of nm using cyclic ligand/water exposures is described. Then, by a combination of in-depth surface analyses and molecular dynamics simulations, the presence and role of hydroxyl defects in the ZIF-8 layer to reach this thickness are established. At the same time, this study unveils an inherent limit of the method: thickness growth is consubstantial with defect repairing upon the crystallites ripening; such defect repairing eventually leads to the decrease of the pore window below the diffusion radius of the incoming linker, thus apparently capping the maximum MOF thickness observable for this type of material topology through this growth method.

3.
Materials (Basel) ; 16(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36984331

RESUMEN

Using Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix. Electrochemical characterizations in half-cells, on electrodes not containing additional conductive additive, revealed the importance of the protective C shell to achieve high specific capacity (up to 2200 mAh.g-1), along with good stability (200 cycles with an average Ceff > 99%). These performances are far superior to that of electrodes made with non-C-coated Si NPs or prepared by mixing both components. These observations highlight the synergetic effects of C shell on Si NPs, and of the single-step in situ preparation that enables the yield of a Si@C-GHG hybrid composite with physicochemical, structural, and morphological properties promoting sample conductivity and Li-ion diffusion pathways.

4.
Materials (Basel) ; 15(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35591373

RESUMEN

Lithium-rich disordered rocksalt Li2TiS3 offers large discharge capacities (>350 mAh·g−1) and can be considered a promising cathode material for high-energy lithium-ion battery applications. However, the quick fading of the specific capacity results in a poor cycle life of the system, especially when liquid electrolyte-based batteries are used. Our efforts to solve the cycling stability problem resulted in the discovery of new high-energy selenium-substituted materials (Li2TiSexS3−x), which were prepared using a wet mechanochemistry process. X-ray diffraction analysis confirmed that all compositions were obtained in cation-disordered rocksalt phase and that the lattice parameters were expanded by selenium substitution. Substituted materials delivered large reversible capacities, with smaller average potentials, and their cycling stability was superior compared to Li2TiS3 upon cycling at a rate of C/10 between 3.0−1.6 V vs. Li+/Li.

6.
Front Chem ; 7: 466, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316974

RESUMEN

With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1-x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence quantum yields (PLQY) > 50% and similar PL decay times (64-67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant oxidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25-100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact.

7.
Front Chem ; 7: 223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058129

RESUMEN

The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. Because ionic liquids can be easily obtained with chosen molecular structures and tuneable physicochemical properties, they can be use as media to optimize the exfoliation of graphite. The understanding of the interactions involved between graphite and various chemical functions in the solvent ions will be helpful to find liquids capable of dissociating and stabilizing important quantities of large graphene layers. After a step of sonication, as a mechanical precursor, samples of suspended exfoliated graphene in different ionic liquids have been characterized experimentally in terms of flake size, number of layers, total concentration and purity of the exfoliated material. Nine different ionic liquids based on imidazolium, pyrrolidinium and ammonium cations and on bis(trifluoromethylsulfonyl)imide, triflate, dicyanamide, tricyanomethanide, and methyl sulfate anions have been tested. UV-vis, Raman and X-ray photoelectron in addition to high resolution transmission electron and atomic force microscopy have been selected to characterize suspended exfoliated graphene in ionic liquids. The number of layers in the flakes exfoliated, the size and concentration depend of the structure of the ionic liquid selected. In order to obtain large flake sizes, ionic liquids with bis(trifluoromethylsulfonyl)imide anions and a cation with an alkyl chain of medium length should be selected. Smaller cation and anion favors the exfoliation of graphene. The exfoliation caused the formation of C-H bonds and the oxidation of the graphitic surface.

8.
Nanoscale Adv ; 1(1): 314-321, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132467

RESUMEN

High content nitrogen, sulfur and phosphorus heteroatoms assembled in tree-like dendrimers (DG n ) are confined within the galleries of two-dimensional graphene oxide (GO). The presence of the ternary diethyl-N-ethyl-ammonium groups on the dendrimer peripheries ensures the exfoliation of graphene sheets thereby affording interfacially bridged, three-dimensional heteroatom-enriched graphene-based hybrid nanostructures (DG n -GO). Dendrimer generation (from 1 to 4) that reflects the bulkiness of these conceived nano-trees impacts increasingly the degree of dispersion-exfoliation and sheet desordering. The long-term stability of these aqueous suspensions associated with their handling flexibility allows uniform accommodation of the resulting hybrid materials as flame-retardants in bioplastics.

9.
Nanotechnology ; 29(8): 085701, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29339582

RESUMEN

Whereas the integration of silver nanowires in functional devices has reached a fair level of maturity, the integration of copper nanowires still remains difficult, mainly due to the intrinsic instability of copper nanowires in ambient conditions. In this paper, copper nanowire based transparent electrodes with good performances (33 Ω sq-1 associated with 88% transparency) were obtained, and their degradation in different conditions was monitored, in particular by electrical measurements, transmission electron microscopy, x-ray photoelectron spectrometry and Auger electron spectroscopy. Several routes to stabilize the random networks of copper nanowires were evaluated. Encapsulation through laminated barrier film with optical clear adhesive and atmospheric pressure spatial atomic layer deposition were found to be efficient and were used for the fabrication of transparent film heaters.

10.
Dalton Trans ; 46(4): 1163-1171, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28054058

RESUMEN

The linear, two-coordinate and isostructural heteroleptic [M(IPr){N(SiMe3)2}] (IPr = 1,3-bis(diisopropylphenyl)-imidazol-2-ylidene), formally MI complexes (M = Co, 3; Fe, 4) were obtained by the reduction of [M(IPr)Cl{N(SiMe3)2}] with KC8, or [Co(IPr){N(SiMe3)2}2] with mes*PH2, mes* = 2,4,6-tBu3C6H2. The magnetism of 3 and 4 implies CoII and FeII centres coupled to one ligand-delocalized electron, in line with XPS and XANES data; the ac susceptibility of 4 detected a pronounced frequency dependence due to slow magnetization relaxation. Reduction of [Fe(IPr)Cl{N(SiMe3)2}] with excess KC8 in toluene gave the heteronuclear 'inverse-sandwich' Fe-K complex 7, featuring η6-toluene sandwiched between one Fe0 and one K+ centre.

11.
Chemistry ; 22(39): 14029-14035, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27516360

RESUMEN

Copper/copper oxide (Cu/Cu2 O) electrodes are known to display interesting electrocatalytic performances for the reduction of CO2 , and thus, deserve further investigation for optimization. Here, we show that the addition of nitrogen-based organic additives greatly improves the activity of these electrodes (higher current densities, greater selectivity, and higher faradaic yields). The best effector is found to be tetramethyl cyclam. For example, electrolysis at -2.0 V versus Fc+ /Fc in CO2 -saturated DMF/H2 O (99:1, v/v) in the presence of this effector results in formic acid with almost 90 % faradaic yield. SEM and XPS analysis of the electrode surface reveals that the organic additive promotes the formation of active Cu0 nanoparticles from Cu2 O during electrolysis. This simple approach provides a straightforward strategy toward the optimization of Cu/Cu2 O electrodes.

12.
Sci Rep ; 6: 23940, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044371

RESUMEN

In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.

13.
Langmuir ; 32(19): 4774-83, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27118296

RESUMEN

The interfacing of polyoxometalates and graphene can be considered to be an innovative way to generate hybrid structures that take advantage of the properties of both components. Polyoxometalates are redox-sensitive and photosensitive compounds with high temperature stability (up to 400 °C for some), showing tunable properties depending on the metal incorporated inside the complex. Graphene has a unique electronic band structure combined with good material properties for electrical and optical applications. The spontaneous, rather than electrochemical, functionalization of epitaxial graphene on SiC with Keggin phosphomolybdate derivative TBA3[PMo11O39{Sn(C6H4)C≡C(C6H4)N2}] (named K(Mo)Sn[N2(+)]) bearing a phenyl diazonium unit is investigated. Graphene decoration is evidenced by means of AFM, Raman, XPS, and cyclic voltammetry, indicating a successful immobilization of the polyoxomolybdate. The covalent bonding of the polyoxometalate to the graphene substrate can be deduced from the appearance of a D band in the Raman spectra and from the loss of mobility in the electrical conduction. High-resolution XPS spectra reveal an electron transfer from the graphene to the Mo complex. The comparison of charge-carrier density measurements before and after grafting supports the p-type doping effect, which is further evidenced by work function UPS measurements.

15.
J Phys Chem B ; 119(33): 10784-97, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26204428

RESUMEN

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.


Asunto(s)
Laboratorios , Compuestos Orgánicos/química , Espectroscopía de Fotoelectrones , Espectrometría de Masa de Ion Secundario , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/química , Fluorenos/química , Fluorobencenos/química
16.
ACS Appl Mater Interfaces ; 7(27): 15068-77, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26098140

RESUMEN

The purpose of this article is to report a new method for the surface functionalization of commercially available gas diffusion layers (GDLs) by the electrochemical reduction of diazonium salt containing hydrophobic functional groups. The method results in superhydrophobic GDLs, over a large area, without pore blocking. An X-ray photoelectron spectroscopy study based on core level spectra and chemical mapping has demonstrated the successful grafting route, resulting in a homogeneous distribution of the covalently bonded hydrophobic molecules on the surface of the GDL fibers. The result was corroborated by contact angle measurement, showing similar hydrophobicity between the grafted and PTFE-modified GDLs. The electrochemically modified GDLs were tested in proton exchange membrane fuel cells under automotive, wet, and dry conditions and demonstrated improved performance over traditional GDLs.

17.
Opt Lett ; 39(17): 5062-5, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25166074

RESUMEN

We examined the ultrafast dynamics of photocarriers in nanocrystalline ZnOxNy thin films as a function of compositional variation using femtosecond differential transmittance spectroscopy. The relaxation dynamics of photogenerated carriers and electronic structures are strongly dependent on nitrogen concentration. Photocarriers of ZnOxNy films relax on two different time scales. Ultrafast relaxation over several picoseconds is observed for all chemical compositions. However, ZnO and oxygen-rich phases show slow relaxation (longer than several nanoseconds), whereas photocarriers of films with high nitrogen concentrations relax completely on subnanosecond time scales. These relaxation features may provide a persistent photocurrent-free and prompt photoresponsivity for ZnOxNy with high nitrogen concentrations, as opposed to ZnO for display applications.

18.
ACS Nano ; 8(9): 9224-32, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25171048

RESUMEN

The use of mild oxidants in chemical vapor deposition (CVD) reactions has proven enormously useful. This was also true for the CVD growth of carbon nanotubes. As yet though, the use of mild oxidants in the CVD of graphene has remained unexplored. Here we explore the use of CO2 as a mild oxidant during the growth of graphene over Ni with CH4 as the feedstock. Both our experimental and theoretical findings provide in-depth insight into the growth mechanisms and point to the mild oxidants playing multiple roles. Mild oxidants lead to the formation of a suboxide in the Ni, which suppresses the bulk diffusion of C species suggesting a surface growth mechanism. Moreover, the formation of a suboxide leads to enhanced catalytic activity at the substrate surface, which allows reduced synthesis temperatures, even as low as 700 °C. Even at these low temperatures, the quality of the graphene is exceedingly high as indicated by a negligible D mode in the Raman spectra. These findings suggest the use of mild oxidants in the CVD fabrication as a whole could have a positive impact.

19.
Sci Rep ; 4: 4948, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24824778

RESUMEN

Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3-10 cm(2)/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm(2)/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm(2) V(-1) s(-1), the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices.

20.
Adv Mater ; 25(47): 6854-8, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24105733

RESUMEN

Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes.


Asunto(s)
Grafito/química , Nanotubos de Carbono/química , Capacidad Eléctrica , Técnicas Electroquímicas , Electrodos , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...