Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7081, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528099

RESUMEN

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.


Asunto(s)
Medios de Cultivo , Factor 2 de Crecimiento de Fibroblastos , Factor I del Crecimiento Similar a la Insulina , Factor Inhibidor de Leucemia , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Fertilización In Vitro , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor Inhibidor de Leucemia/farmacología , Oocitos , Proteómica , Porcinos/embriología , Porcinos/genética , Factor I del Crecimiento Similar a la Insulina/farmacología
2.
Front Cell Dev Biol ; 11: 1145182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091980

RESUMEN

Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.

3.
J Reprod Dev ; 68(3): 165-172, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35431279

RESUMEN

It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time, it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.


Asunto(s)
Técnicas de Transferencia Nuclear , Cigoto , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Mamíferos/genética , Técnicas de Transferencia Nuclear/veterinaria , Oocitos , Ovinos/genética , Cigoto/metabolismo
4.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918523

RESUMEN

The nucleolus is an important nucleus sub-organelle found in almost all eukaryotic cells. On the one hand, it is known as a differentiated active site of ribosome biogenesis in somatic cells, but on the other hand, in fully grown oocytes, zygotes, and early embryos (up to the major embryonic genome activation), it is in the form of a particular homogenous and compact structure called a fibrillar sphere. Nowadays, thanks to recent studies, we know many important functions of this, no doubt, interesting membraneless nucleus sub-organelle involved in oocyte maturation, embryonic genome activation, rRNA synthesis, etc. However, many questions are still unexplained and remain a mystery. Our aim is to create a comprehensive overview of the recent knowledge on the fibrillar sphere and envision how this knowledge could be utilized in further research in the field of biotechnology and nucleolotransfer therapy.

5.
Animals (Basel) ; 11(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926086

RESUMEN

Xenogenic mammalian sperm heads injected into mouse ovulated oocytes decondense and form pronuclei in which sperm DNA parameters can be evaluated. We suggest that this approach can be used for the assessment of sperm DNA damage level and the evaluation of how certain sperm treatments (freezing, lyophilization, etc.) influence the quality of spermatozoa.

6.
Theriogenology ; 155: 17-24, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32590076

RESUMEN

Sequence differences are considered to be the basic cause of developmental failure in interspecies embryos when more distant species are combined. However, other phenomena, such as insufficient or excessive quantity of specific cellular factors, might also influence the outcome. These effects are usually not considered. One of the organelles shown to contain different amount of proteins is the oocyte nucleolus-like body. Here we show that upon interspecies transfer, a single porcine nucleolus-like body is unable to support the development of a mouse parthenogenetic embryo derived from an enucleolated oocyte. However, when the amount of the porcine nucleolar material is increased to equalize the amount of mouse nucleolar material by transferring two nucleolus-like bodies, mouse embryos are able to pass the developmental block elicited by enucleolation. These embryos progress to the blastocyst stage at rates comparable to controls. Thus, using the model of an interspecies nucleolus-like body transplantation between mouse and pig oocytes, we show that an inadequate amount of nucleolar factors, rather than the species origin, affects the development. In a wider context of interspecies nuclear transfer schemes, the observed incompatibility between more distant species might not stem simply from sequence differences but also from improper dosage of key cellular factors.


Asunto(s)
Desarrollo Embrionario , Oocitos , Animales , Blastocisto , Nucléolo Celular , Femenino , Ratones , Técnicas de Transferencia Nuclear/veterinaria , Embarazo , Porcinos
7.
Anim Reprod ; 17(4): e20200533, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791031

RESUMEN

Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus-oocyte complex, polar body and meiotic spindle. This study is focused on the differences between the morphological assessment of oocyte quality, the assessment based on Lissamine Green B (LB) staining and the analysis of oocytes using a proteomic approach. We evaluated the effectiveness of electrochemical and chemical parthenogenetic activation under our laboratory conditions and evaluated the applicability of Lissamine Green B staining of cumulus-oocyte complexes (COCs) as a non-invasive method for predicting the maturational and developmental competence of porcine oocytes cultured in vitro. We determined that chemical parthenogenetic activation using ionomycin and 6-dimethylaminopurine was slightly more effective than electrochemical activation. After oocyte selection according to LB staining, we found significant differences (P<0.05) between the LB- group and LB+ group and the control group in their maturation, cleavage rate and rate of blastocysts. Proteomic analyses identified a selection of proteins that were differentially expressed in each group of analysed oocytes. Oocytes of the LB- group exhibited an increased variability of proteins involved in transcription regulation, proteosynthesis and the protein folding crucial for oocyte maturation and further embryonic development. These results found a better competence of LB- oocytes in maturation, cleavage and ability to reach the blastocyst stage.

8.
Mol Reprod Dev ; 87(1): 102-114, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736195

RESUMEN

Although our knowledge regarding oocyte quality and development has improved significantly, the molecular mechanisms that regulate and determine oocyte developmental competence are still unclear. Therefore, the objective of this study was to identify and analyze the transcriptome profiles of porcine oocytes derived from large or small follicles using RNA high-throughput sequencing technology. RNA libraries were constructed from oocytes of large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) ovarian follicles and then sequenced in an Illumina HiSeq4000. Transcriptome analysis showed a total of 14,557 genes were commonly detected in both oocyte groups. Genes related to the cell cycle, oocyte meiosis, and quality were among the top highly expressed genes in both groups. Differential expression analysis revealed 60 up- and 262 downregulated genes in the LO compared with the SO group. BRCA2, GPLD1, ZP3, ND3, and ND4L were among the highly abundant and highly significant differentially expressed genes (DEGs). The ontological classification of DEGs indicated that protein processing in endoplasmic reticulum was the top enriched pathway. In addition, biological processes related to cell growth and signaling, gene expression regulations, cytoskeleton, and extracellular matrix organization were among the highly enriched processes. In conclusion, this study provides new insights into the global transcriptome changes and the abundance of specific transcripts in porcine oocytes in correlation with follicle size.


Asunto(s)
Oocitos/metabolismo , Oogénesis/genética , Folículo Ovárico/citología , Porcinos/crecimiento & desarrollo , Porcinos/genética , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
9.
Zygote ; 27(4): 232-240, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31397243

RESUMEN

Brilliant cresyl blue (BCB) vital labelling is a powerful method for analyzing the quality of porcine cumulus-oocyte complexes. Our aim was to investigate the correlation between the selection of porcine oocytes using BCB labelling and selected intranuclear characteristics of porcine oocytes and parthenotes. Moreover, BCB labelling was correlated with the diameter of the oocyte and the developmental potential of the parthenotes. The following methods were used: BCB labelling, measurement of the diameter of the oocyte, parthenogenetic activation, immunocytochemistry, transmission electron microscopy, enucleation and relative protein concentration (RPC) analysis. We determined that the diameter of the oocytes in the BCB-positive (BCB+) group was significantly larger than in the BCB-negative (BCB-) group. Immediately after oocyte selection according to BCB labelling, we found significant difference in chromatin configuration between the analyzed groups. BCB+ oocytes were significantly better at maturation than BCB- oocytes. BCB+ embryos were significantly more competent at cleaving and in their ability to reach the blastocyst stage than BCB- embryos. Ultrastructural analyses showed that the formation of active nucleoli in the BCB+ group started at the 8-cell stage. Conversely, most BCB- embryos at the 8-cell and 16-cell stages were fragmented. No statistically significant difference in RPC in nucleolus precursor bodies (NPBs) between BCB+ and BCB- oocytes was found. We can conclude that BCB labelling could be suitable for assessing the quality of porcine oocytes. Moreover, the evaluation of RPC indicates that the quantitative content of proteins in NPB is already established in growing oocytes.


Asunto(s)
Blastocisto/química , Núcleo Celular/química , Embrión de Mamíferos/química , Oocitos/química , Oxazinas/química , Animales , Blastocisto/citología , Blastocisto/metabolismo , Núcleo Celular/ultraestructura , Tamaño de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/ultraestructura , Femenino , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Nucleares/metabolismo , Oocitos/citología , Oocitos/metabolismo , Reproducibilidad de los Resultados , Coloración y Etiquetado/métodos , Porcinos
10.
Int J Dev Biol ; 63(3-4-5): 105-112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058290

RESUMEN

Mammalian oocytes/zygotes contain atypical nucleoli that are composed exclusively of a dense fibrillar material. It has been commonly accepted that these nucleoli serve as a repository of components that are used later on, as the embryo develops, for the construction of typical tripartite nucleoli. Indeed, when nucleoli were removed from immature oocytes (enucleolation) and these oocytes were then matured, fertilized or parthenogenetically activated, development of the produced embryos ceased after one or two cleavages with no detectable nucleoli in nuclei. This indicated that zygotic nucleoli originate exclusively from oocytes, i.e. are maternally inherited. Recently published results, however, do not support this developmental biology dogma and demonstrate that maternal nucleoli in one-cell stage embryos are necessary only during a very short time period after fertilization when they serve as a major heterochromatin organizing structures. Nevertheless, it still remains to be determined, which other functions/roles the atypical oocyte/zygote nucleoli eventually have.


Asunto(s)
Nucléolo Celular/fisiología , Heterocromatina/fisiología , Oocitos/fisiología , Cigoto/fisiología , Animales , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Fertilización , Humanos , Herencia Materna , Ratones , Nucleoplasminas/genética , Oocitos/ultraestructura , Factores de Tiempo
11.
Int J Dev Biol ; 63(3-4-5): 253-258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058302

RESUMEN

The oocyte GV/GVs (germinal vesicle/germinal vesicles) and zygot PN/PNs (pronucleus/pronuclei) of some mammals contain clearly visible nucleoli which exhibit an atypical morphological structure. These nucleoli (NCLs) can be relatively easily manipulated, i.e. removed from GVs/PNs or eventually transferred into another oocyte/zygote. Thus, with the help of micromanipulation techniques it was possible to uncover the real function(s) they play in processes of oocyte maturation and early embryonic development. The purpose of our review is to describe briefly the micromanipulation techniques that can be used for oocyte/zygote nucleoli manipulation. Moreover, we present some examples of results that were obtained in nucleolus manipulation experiments.


Asunto(s)
Nucléolo Celular/trasplante , Oocitos/citología , Cigoto/citología , Animales , Nucléolo Celular/metabolismo , Ratones , Micromanipulación/métodos , Oocitos/efectos de los fármacos , Partenogénesis , Porcinos
12.
Mol Reprod Dev ; 86(4): 426-439, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30756429

RESUMEN

Oocyte developmental competence is acquired during folliculogenesis and regulated by complex molecular mechanisms. Several molecules are involved in these mechanisms, including microRNAs (miRNAs) that are essential for oocyte-specific processes throughout the development. The objective of this study was to identify the expression profile of miRNAs in porcine oocytes derived from follicles of different sizes using RNA deep sequencing. Oocytes were aspirated from large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) follicles and tested for developmental competence and chromatin configurations. Small RNA libraries were constructed from both groups and then sequenced in an Illumina NextSeq. 500. Oocytes from the LO group exhibited higher developmental competence and different chromatin configuration compared with oocytes from the SO group. In total, 167 and 162 known miRNAs were detected in the LO and SO groups, respectively. MiR-205, miR-16, miR-148a-3p, and miR-125b were among the top 10 highly expressed miRNAs in both groups. Eight miRNAs were differentially expressed (DE) between both groups. Target gene prediction and pathway analysis revealed 46 pathways that were enriched with miRNA-target genes. The oocyte meiosis pathway and signaling pathways including FoxO, PI3K-Akt, and cAMP were predictably targeted by DE miRNAs. These results give more insights into the potential role of miRNAs in regulating the oocyte development.


Asunto(s)
Cromatina/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/biosíntesis , Oocitos/metabolismo , Oogénesis/fisiología , Análisis de Secuencia de ARN , Animales , Cromatina/genética , Femenino , Oocitos/citología , Porcinos
13.
Zygote ; 26(5): 395-402, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30311594

RESUMEN

SummaryThe present study examines the role of RNA polymerase I (RPI)-mediated transcription, maternally inherited rRNA and nucleolar proteins in the resumption of fibrillogranular nucleoli during embryonic genome activation (EGA) in porcine embryos. Late 4-cell embryos were incubated in the absence (control) or presence of actinomycin D (AD) (0.2 µg/ml for inhibition of RPI; 2.0 µg/ml for inhibition of total transcription) and late 2-cell embryos were cultured to the late 4-cell stage with 0.2 µg/ml AD to block EGA. Embryos were then processed for reverse-transcriptase polymerase chain reaction (RT-PCR), and for autoradiography (ARG), transmission electron microscopy (TEM), fluorescence in situ hybridization (FISH), silver staining and immunofluorescence (for RPI). Embryos in the control group displayed extranucleolar and intranucleolar ARG labelling, and exhibited de novo synthesis of rRNA and reticulated functional nucleoli. Nucleolar proteins were located in large foci. After RPI inhibition, nucleolar precursors transformed into segregated fibrillogranular structures, however no fibrillar centres were observed. The localization of rDNA and clusters of rRNA were detected in 57.1% immunoprecipitated (IP) analyzed nucleoli and dispersed RPI; 30.5% of nuclei showed large deposits of nucleolar proteins. Embryos from the AD-2.0 group did not display any transcriptional activity. Nucleolar formation was completely blocked, however 39.4% of nuclei showed rRNA clusters; 85.7% of nuclei were co-localized with nucleolar proteins. Long-term transcriptional inhibition resulted in the lack of ARG and RPI labelling; 40% of analyzed nuclei displayed the accumulation of rRNA molecules into large foci. In conclusion, maternally inherited rRNA co-localized with rDNA and nucleolar proteins can initiate a partial nucleolar assembly, resulting in the formation of fibrilogranular structures independently on activation of RPI-mediated transcription.


Asunto(s)
Blastocisto/fisiología , Nucléolo Celular/genética , Herencia Materna , ARN Ribosómico/genética , Animales , Autorradiografía , Blastocisto/citología , Nucléolo Celular/fisiología , Femenino , Fertilización In Vitro , Genoma , Hibridación Fluorescente in Situ , Masculino , Microscopía Electrónica de Transmisión , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos
14.
Zygote ; 25(6): 675-685, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29151403

RESUMEN

It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.


Asunto(s)
Blastocisto/citología , Nucléolo Celular/fisiología , Nucléolo Celular/trasplante , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Oocitos/citología , Oogénesis/fisiología , Animales , Blastocisto/metabolismo , Clonación de Organismos , Transferencia de Embrión , Embrión de Mamíferos/metabolismo , Femenino , Ratones , Oocitos/fisiología , Embarazo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA