Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
iScience ; 26(6): 106887, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37324528

RESUMEN

Lithium (Li) has a wide range of uses in science, medicine, and industry, but its isotopy is underexplored, except in nuclear science and in geoscience. 6Li and 7Li isotopic ratio exhibits the second largest variation on earth's surface and constitutes a widely used tool for reconstructing past oceans and climates. As large variations have been measured in mammalian organs, plants or marine species, and as 6Li elicits stronger effects than natural Li (∼95% 7Li), a central issue is the identification and quantification of biological influence of Li isotopes distribution. We show that membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes. This systematic 6Li enrichment is driven by membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport. Evidencing that transport proteins discriminate between isotopes differing by one neutron opens new avenues for transport mechanisms, Li physiology, and paleoenvironments.

2.
Sci Adv ; 8(38): eabq8489, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149965

RESUMEN

We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo-electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatidilinositoles , Canales de Potasio de Rectificación Interna , Microscopía por Crioelectrón , Humanos , Potenciales de la Membrana , Canales de Potasio de Rectificación Interna/química
3.
J Clin Med ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566717

RESUMEN

Pseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch's membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity. Overall, our data showed a deficit in plasma PPi in PXE patients compared to controls. Remarkably, affected females showed higher PPi levels than males, but a lower LLAC. There was a strong correlation between age and PPi in PXE patients (r = 0.423, p < 0.0001) but not in controls (r = 0.059, p = 0.828). A weak correlation was found between PPi and CAC (r = 0.266, p < 0.02); however, there was no statistically significant connection with LLAC (r = 0.068, p = 0.518) or a severity score (r = 0.077, p = 0.429). Surprisingly, we found no significant correlation between plasma alkaline phosphatase activity and PPi (r = 0.113, p = 0.252) or between a 10-year cardiovascular risk score and all other variables. Multivariate analysis confirmed that LLAC and CAC were strongly dependent on age, but not on PPi. Our data showed that arterial calcification is only weakly linked to circulating PPi levels and that time (i.e., age) appears to be the major determinant of disease severity and calcification in PXE. These data are important to better understand the natural history of this disease but also for the follow-up and management of patients, and the design of future clinical trials. Our results also show that PPi is not a good biomarker for the evaluation of disease severity and progression.

4.
Eur J Neurol ; 29(8): 2398-2411, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460302

RESUMEN

BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.


Asunto(s)
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Diagnóstico Tardío , Humanos , Mutación/genética , Mialgia , Parálisis , Estudios Retrospectivos
5.
Front Pharmacol ; 13: 837534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370739

RESUMEN

Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu' Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.

6.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830172

RESUMEN

The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Canales de Potasio Shaw , Animales , Humanos , Escorpiones/química , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/química , Xenopus laevis
7.
Front Mol Biosci ; 8: 691901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179097

RESUMEN

In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.

8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008764

RESUMEN

ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic ß-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.


Asunto(s)
Secuencia Conservada , Mutación/genética , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Triptófano/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Activación del Canal Iónico , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína
9.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003279

RESUMEN

Kv3.1 channel is abundantly expressed in neurons and its dysfunction causes sleep loss, neurodegenerative diseases and depression. Fluoxetine, a serotonin selective reuptake inhibitor commonly used to treat depression, acts also on Kv3.1. To define the relationship between Kv3.1 and serotonin receptors (SR) pharmacological modulation, we showed that 1C11, a serotonergic cell line, expresses different voltage gated potassium (VGK) channels subtypes in the presence (differentiated cells (1C11D)) or absence (not differentiated cells (1C11ND)) of induction. Only Kv1.2 and Kv3.1 transcripts increase even if the level of Kv3.1b transcripts is highest in 1C11D and, after fluoxetine, in 1C11ND but decreases in 1C11D. The Kv3.1 channel protein is expressed in 1C11ND and 1C11D but is enhanced by fluoxetine only in 1C11D. Whole cell measurements confirm that 1C11 cells express (VGK) currents, increasing sequentially as a function of cell development. Moreover, SR 5HT1b is highly expressed in 1C11D but fluoxetine increases the level of transcript in 1C11ND and significantly decreases it in 1C11D. Serotonin dosage shows that fluoxetine at 10 nM blocks serotonin reuptake in 1C11ND but slows down its release when cells are differentiated through a decrease of 5HT1b receptors density. We provide the first experimental evidence that 1C11 expresses Kv3.1b, which confirms its major role during differentiation. Cells respond to the fluoxetine effect by upregulating Kv3.1b expression. On the other hand, the possible relationship between the fluoxetine effect on the kinetics of 5HT1b differentiation and Kv3.1bexpression, would suggest the Kv3.1b channel as a target of an antidepressant drug as well as it was suggested for 5HT1b.


Asunto(s)
Fluoxetina/farmacología , Neuronas Serotoninérgicas/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Canales de Potasio Shaw/genética , Animales , Células CHO , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Cricetulus , Depresión/tratamiento farmacológico , Depresión/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Canal de Potasio Kv.1.2/genética , Neuronas Serotoninérgicas/metabolismo , Serotonina/genética , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
10.
Sci Rep ; 10(1): 8392, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439887

RESUMEN

Inward rectifier potassium (Kir) channels play diverse and important roles in shaping action potentials in biological membranes. An increasing number of diseases are now known to be directly associated with abnormal Kir function. However, the gating of Kir still remains unknown. To increase our understanding of its gating mechanism, a dynamical view of the entire channel is essential. Here the gating activation was studied using a recent developped in silico method, MDeNM, which combines normal mode analysis and molecular dynamics simulations that showed for the very first time the importance of interrelated collective and localized conformational movements. In particular, we highlighted the role played by concerted movements of the different regions throughout the entire protein, such as the cytoplasmic and transmembrane domains and the slide helices. In addition, the HDX-MS analysis achieved in these studies provided a comprehensive and detailed view of the dynamics associated with open/closed transition of the Kir channel in coherence with the theoretical results. MDeNM gives access to the probability of the different opening states that are in agreement with our electrophysiological experiments. The investigations presented in this article are important to remedy dysfunctional channels and are of interest for designing new pharmacological compounds.


Asunto(s)
Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Simulación por Computador , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Activación del Canal Iónico , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Conformación Proteica
11.
Sci Rep ; 8(1): 16681, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420713

RESUMEN

Periodic paralyses (PP) are characterized by episodic muscle weakness and are classified into the distinct hyperkalaemic (hyperPP) and hypokalaemic (hypoPP) forms. The dominantly-inherited form of hyperPP is caused by overactivity of Nav1.4 - the skeletal muscle voltage-gated sodium channel. Familial hypoPP results from a leaking gating pore current induced by dominant mutations in Nav1.4 or Cav1.1, the skeletal muscle voltage-gated calcium channel. Here, we report an individual with clinical signs of hyperPP and hypokalaemic episodes of muscle paralysis who was heterozygous for the novel p.Ala204Glu (A204E) substitution located in one region of Nav1.4 poor in disease-related variations. A204E induced a significant decrease of sodium current density, increased the window current, enhanced fast and slow inactivation of Nav1.4, and did not cause gating pore current in functional analyses. Interestingly, the negative impact of A204E on Nav1.4 activation was strengthened in low concentration of extracellular K+. Our data prove the existence of a phenotype combining signs of hyperPP and hypoPP due to dominant Nav1.4 mutations. The hyperPP component would result from gain-of-function effects on Nav1.4 and the hypokalemic episodes of paralysis from loss-of-function effects strengthened by low K+. Our data argue for a non-negligible role of Nav1.4 loss-of-function in familial hypoPP.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Canales de Calcio/genética , Canales de Calcio Tipo L , Canales de Cloruro/genética , Células HEK293 , Humanos , Masculino , Mutación/genética , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Sodio Activados por Voltaje/metabolismo
12.
J Bone Miner Res ; 33(10): 1826-1841, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29813186

RESUMEN

Andersen's syndrome is a rare disorder affecting muscle, heart, and bone that is associated with mutations leading to a loss of function of the inwardly rectifying K+ channel Kir2.1. Although the Kir2.1 function can be anticipated in excitable cells by controlling the electrical activity, its role in non-excitable cells remains to be investigated. Using Andersen's syndrome-induced pluripotent stem cells, we investigated the cellular and molecular events during the osteoblastic and chondrogenic differentiation that are affected by the loss of the Ik1 current. We show that loss of Kir2.1 channel function impairs both osteoblastic and chondrogenic processes through the downregulation of master gene expression. This downregulation is the result of an impairment of the bone morphogenetic proteins signaling pathway through dephosphorylation of the Smad proteins. Restoring Kir2.1 channel function in Andersen's syndrome cells rescued master genes expression and restored normal osteoblast and chondrocyte behavior. Our results show that Kir2.1-mediated activity controls endochondral and intramembranous ossification signaling pathways. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Condrogénesis/genética , Regulación de la Expresión Génica , Osteogénesis/genética , Canales de Potasio de Rectificación Interna/metabolismo , Transducción de Señal/genética , Síndrome de Andersen/genética , Síndrome de Andersen/patología , Biomarcadores/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Osteoblastos/metabolismo , Fosforilación , Proteína Smad1/metabolismo
13.
Sci Rep ; 8(1): 2041, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391559

RESUMEN

Mutations in NaV1.4, the skeletal muscle voltage-gated Na+ channel, underlie several skeletal muscle channelopathies. We report here the functional characterization of two substitutions targeting the R1451 residue and resulting in 3 distinct clinical phenotypes. The R1451L is a novel pathogenic substitution found in two unrelated individuals. The first individual was diagnosed with non-dystrophic myotonia, whereas the second suffered from an unusual phenotype combining hyperkalemic and hypokalemic episodes of periodic paralysis (PP). The R1451C substitution was found in one individual with a single attack of hypoPP induced by glucocorticoids. To elucidate the biophysical mechanism underlying the phenotypes, we used the patch-clamp technique to study tsA201 cells expressing WT or R1451C/L channels. Our results showed that both substitutions shifted the inactivation to hyperpolarized potentials, slowed the kinetics of inactivation, slowed the recovery from slow inactivation and reduced the current density. Cooling further enhanced these abnormalities. Homology modeling revealed a disruption of hydrogen bonds in the voltage sensor domain caused by R1451C/L. We concluded that the altered biophysical properties of R1451C/L well account for the PMC-hyperPP cluster and that additional factors likely play a critical role in the inter-individual differences of clinical expression resulting from R1451C/L.


Asunto(s)
Mutación Missense , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética
14.
Cell Tissue Res ; 371(2): 309-323, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29018970

RESUMEN

Andersen's syndrome (AS) is a rare autosomal disorder that has been defined by the triad of periodic paralysis, cardiac arrhythmia, and developmental anomalies. AS has been directly linked to over 40 different autosomal dominant negative loss-of-function mutations in the KCNJ2 gene, encoding for the tetrameric strong inward rectifying K+ channel KIR2.1. While KIR2.1 channels have been suggested to contribute to setting the resting membrane potential (RMP) and to control the duration of the action potential (AP) in skeletal and cardiac muscle, the mechanism by which AS mutations produce such complex pathophysiological symptoms is poorly understood. Thus, we use an adenoviral transduction strategy to study in vivo subcellular distribution of wild-type (WT) and AS-associated mutant KIR2.1 channels in mouse skeletal muscle. We determined that WT and D71V AS mutant KIR2.1 channels are localized to the sarcolemma and the transverse tubules (T-tubules) of skeletal muscle fibers, while the ∆314-315 AS KIR2.1 mutation prevents proper trafficking of the homo- or hetero-meric channel complexes. Whole-cell voltage-clamp recordings in individual skeletal muscle fibers confirmed the reduction of inwardly rectifying K+ current (IK1) after transduction with ∆314-315 KIR2.1 as compared to WT channels. Analysis of skeletal muscle function revealed reduced force generation during isometric contraction as well as reduced resistance to muscle fatigue in extensor digitorum longus muscles transduced with AS mutant KIR2.1. Together, these results suggest that KIR2.1 channels may be involved in the excitation-contraction coupling process required for proper skeletal muscle function. Our findings provide clues to mechanisms associated with periodic paralysis in AS.


Asunto(s)
Síndrome de Andersen/genética , Técnicas de Silenciamiento del Gen , Músculo Esquelético/patología , Mutación/genética , Canales de Potasio de Rectificación Interna/genética , Adenoviridae/metabolismo , Síndrome de Andersen/patología , Síndrome de Andersen/fisiopatología , Animales , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Activación del Canal Iónico , Contracción Isométrica , Ratones , Fatiga Muscular , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiopatología
15.
FASEB J ; 30(2): 909-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26527067

RESUMEN

Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired ß3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of ß-adrenergic receptor signaling.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal/fisiología , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Femenino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Consumo de Oxígeno/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Receptores de Mineralocorticoides/genética , Termogénesis/fisiología
16.
Stem Cells Dev ; 25(2): 151-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26573604

RESUMEN

Andersen's syndrome (AS) is a rare disorder characterized by a triad of symptoms: periodic paralysis, cardiac arrhythmia, and bone developmental defects. Most of the patients carry mutations on the inward rectifier potassium channel Kir2.1 encoded by the KCNJ2 gene. kcnj2 knockout mice are lethal at birth preventing, hence, thorough investigations of the physiological and pathophysiological events. We have generated induced pluripotent stem (iPS) cells from healthy as well as from AS patient muscular biopsies using the four-gene cassette required for cellular reprogramming (Oct4, Sox2, Klf4, and c-Myc). The generated AS-iPS cells exhibited the gold standard requirement for iPS cells: expression of genetics and surface pluripotent markers, strong alkaline phosphatase activity, self-renewal, and could be differentiated by the formation of embryoid bodies (EBs) into the three germ layers. Sequencing of the entire coding sequence of the KCNJ2 gene, in AS-iPS cells, revealed that the reprogramming process did not revert the Andersen's syndrome-associated mutation. Moreover, no difference was observed between control and AS-iPS cells in terms of pluripotent markers' expression, self-renewal, and three germ layer differentiation. Interestingly, expression of osteogenic markers are lower in EB-differentiated AS-iPS compared to control iPS cells. Our results showed that the Kir2.1 channel is not important for the reprogramming process and the early step of the development in vitro. However, the osteogenic machinery appears to be hastened in AS-iPS cells, strongly indicating that the generated AS-iPS cells could be a good model to better understand the AS pathophysiology.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Enfermedad del Almacenamiento de Glucógeno Tipo IV/patología , Células Madre Pluripotentes Inducidas/citología , Comunicación Celular/fisiología , Células Cultivadas , Cuerpos Embrioides/metabolismo , Fibroblastos/citología , Estratos Germinativos/metabolismo , Humanos , Factor 4 Similar a Kruppel
17.
Neurology ; 86(2): 161-9, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26659129

RESUMEN

OBJECTIVE: To determine the molecular basis of a complex phenotype of congenital muscle weakness observed in an isolated but consanguineous patient. METHODS: The proband was evaluated clinically and neurophysiologically over a period of 15 years. Genetic testing of candidate genes was performed. Functional characterization of the candidate mutation was done in mammalian cell background using whole cell patch clamp technique. RESULTS: The proband had fatigable muscle weakness characteristic of congenital myasthenic syndrome with acute and reversible attacks of most severe muscle weakness as observed in periodic paralysis. We identified a novel homozygous SCN4A mutation (p.R1454W) linked to this recessively inherited phenotype. The p.R1454W substitution induced an important enhancement of fast and slow inactivation, a slower recovery for these inactivated states, and a frequency-dependent regulation of Nav1.4 channels in the heterologous expression system. CONCLUSION: We identified a novel loss-of-function mutation of Nav1.4 that leads to a recessive phenotype combining clinical symptoms and signs of congenital myasthenic syndrome and periodic paralysis, probably by decreasing channel availability for muscle action potential genesis at the neuromuscular junction and propagation along the sarcolemma.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación/genética , Síndromes Miasténicos Congénitos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódicas Familiares/genética , Adulto , Femenino , Humanos , Debilidad Muscular/genética , Síndromes Miasténicos Congénitos/diagnóstico , Unión Neuromuscular/genética , Parálisis Periódicas Familiares/diagnóstico , Técnicas de Placa-Clamp/métodos
18.
Hum Mol Genet ; 24(2): 471-9, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25205110

RESUMEN

Andersen's syndrome (AS) is a rare and dominantly inherited pathology, linked to the inwardly rectifying potassium channel Kir2.1. AS patients exhibit a triad of symptoms that include periodic paralysis, cardiac dysrhythmia and bone malformations. Some progress has been made in understanding the contribution of the Kir2.1 channel to skeletal and cardiac muscle dysfunctions, but its role in bone morphogenesis remains unclear. We isolated myoblast precursors from muscle biopsies of healthy individuals and typical AS patients with dysmorphic features. Myoblast cultures underwent osteogenic differentiation that led to extracellular matrix mineralization. Osteoblastogenesis was monitored through the activity of alkaline phosphatase, and through the hydroxyapatite formation using Alizarin Red and Von Kossa staining techniques. Patch-clamp recordings revealed the presence of an inwardly rectifying current in healthy cells that was absent in AS osteoblasts, showing the dominant-negative effect of the Kir2.1 mutant allele in osteoblasts. We also found that while control cells actively synthesize hydroxyapatite, AS osteoblasts are unable to efficiently form any extracellular matrix. To further demonstrate the role of the Kir2.1 channels during the osteogenesis, we inhibited Kir2.1 channel activity in healthy patient cells by applying extracellular Ba(2+) or using adenoviruses carrying mutant Kir2.1 channels. In both cases, cells were no longer able to produce extracellular matrixes. Moreover, osteogenic activity of AS osteoblasts was restored by rescue experiments, via wild-type Kir2.1 channel overexpression. These observations provide a proof that normal Kir2.1 channel function is essential during osteoblastogenesis.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV/metabolismo , Mioblastos/metabolismo , Osteogénesis , Canales de Potasio de Rectificación Interna/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/fisiopatología , Humanos , Mioblastos/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética
19.
Sultan Qaboos Univ Med J ; 14(3): e323-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25097766

RESUMEN

OBJECTIVES: Cystic fibrosis transmembrane conductance regulator (CFTR) mutations form distinct mutational panels in different populations and subgroups. The frequency of cystic fibrosis (CF) mutations and prevalence are unknown in Oman. This study aimed to elucidate the mutational panel and prevalence of CF for the North Al Batinah (NAB) region in Oman and to estimate the national prevalence of CF based on the carrier screening of unrelated volunteers. METHODS: The study included retrospective and prospective analyses of CF cases in the NAB region for 1998-2012. Genetic analysis of disease-causing mutations was conducted by screening of the entire coding sequence and exon-intron borders. The obtained mutational panel was used for the carrier screening of 408 alleles of unrelated and unaffected Omani individuals. RESULTS: S549R and F508del were the major mutations, accounting for 89% of mutations in the patient population. Two private mutations, c.1733-1734delTA and c.1175T>G, were identified in the patient cohort. Two carriers, one for F508del and another for S549R, were identified by screening of the volunteer cohort, resulting in a predicted prevalence for Oman of 1 in 8,264. The estimated carrier frequency of CF in Oman was 1 in 94. The carrier frequency in the NAB region was 3.9 times higher. CONCLUSION: The mutational panel for the NAB region and the high proportion of S549R mutations emphasises the need for specific screening for CF in Oman. The different distribution of allele frequencies suggests a spatial clustering of CF in the NAB region.

20.
Hum Mol Genet ; 21(22): 4922-9, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22918120

RESUMEN

Primary aldosteronism (PA, autonomous aldosterone production from the adrenal cortex) causes the most common form of secondary arterial hypertension (HT), which is also the most common curable form of HT. Recent studies have highlighted an important role of mutations in genes encoding potassium channels in the pathogenesis of PA, both in human disease and in animal models. Here, we have exploited the unique features of the hyperaldosteronemic phenotype of Kcnk3 null mice, which is dependent on sexual hormones, to identify genes whose expression is modulated in the adrenal gland according to the dynamic hyperaldosteronemic phenotype of those animals. Genetic inactivation of one of the genes identified by our strategy, dickkopf-3 (Dkk3), whose expression is increased by calcium influx into adrenocortical cells, in the Kcnk3 null background results in the extension of the low-renin, potassium-rich diet insensitive hyperaldosteronemic phenotype to the male sex. Compound Kcnk3/Dkk3 animals display an increased expression of Cyp11b2, the rate-limiting enzyme for aldosterone biosynthesis in the adrenal zona glomerulosa (ZG). Our data show that Dkk3 can act as a modifier gene in a mouse model for altered potassium channel function and suggest its potential involvement in human PA syndromes.


Asunto(s)
Corteza Suprarrenal/metabolismo , Aldosterona/biosíntesis , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Corteza Suprarrenal/patología , Animales , Calcio/metabolismo , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...