Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 224: 109330, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375694

RESUMEN

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Inflamasomas/metabolismo , Microglía , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
2.
Glia ; 70(7): 1301-1316, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353387

RESUMEN

The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-protein complex responsible for the activation of caspase-1 and the subsequent cleavage and activation of the potent proinflammatory cytokines IL-1ß and IL-18, and pyroptotic cell death. NLRP3 is implicated as a driver of inflammation in a range of disorders including neurodegenerative diseases, type 2 diabetes, and atherosclerosis. A commonly reported mechanism contributing to NLRP3 inflammasome activation is potassium ion (K+ ) efflux across the plasma membrane. Identification of K+ channels involved in NLRP3 activation remains incomplete. Here, we investigated the role of the K+ channel THIK-1 in NLRP3 activation. Both pharmacological inhibitors and cells from THIK-1 knockout (KO) mice were used to assess THIK-1 contribution to macrophage NLRP3 activation in vitro. Pharmacological inhibition of THIK-1 inhibited caspase-1 activation and IL-1ß release from mouse bone-marrow-derived macrophages (BMDMs), mixed glia, and microglia in response to NLRP3 agonists. Similarly, BMDMs and microglia from THIK-1 KO mice had reduced NLRP3-dependent IL-1ß release in response to P2X7 receptor activation with ATP. Overall, these data suggest that THIK-1 is a regulator of NLRP3 inflammasome activation in response to ATP and identify THIK-1 as a potential therapeutic target for inflammatory disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Canales de Potasio
3.
Bioorg Med Chem Lett ; 61: 128607, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35123006

RESUMEN

We report a significant decrease in transcription of the G protein-coupled receptor GPR39 in striatal neurons of Parkinson's disease patients compared to healthy controls, suggesting that a positive modulator of GPR39 may beneficially impact neuroprotection. To test this notion, we developed various structurally diverse tool molecules. While we elaborated on previously reported starting points, we also performed an in silico screen which led to completely novel pharmacophores. In vitro studies indicated that GPR39 agonism does not have a profound effect on neuroprotection.


Asunto(s)
Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Regulación Alostérica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pirimidinas/síntesis química , Pirimidinas/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
4.
Genome Biol ; 8(7): R139, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17625002

RESUMEN

BACKGROUND: The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. RESULTS: Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. CONCLUSION: The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls.


Asunto(s)
Genoma , Mapeo Físico de Cromosoma , Sus scrofa/genética , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Cromosomas de los Mamíferos , Clonación Molecular , Biblioteca de Genes , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...